Solve for m
m = \frac{3 \sqrt{5} + 9}{2} \approx 7.854101966
m = \frac{9 - 3 \sqrt{5}}{2} \approx 1.145898034
Share
Copied to clipboard
-\frac{1}{3}m^{2}+3m+3-3=3
Combine \frac{8}{3}m and \frac{1}{3}m to get 3m.
-\frac{1}{3}m^{2}+3m=3
Subtract 3 from 3 to get 0.
-\frac{1}{3}m^{2}+3m-3=0
Subtract 3 from both sides.
m=\frac{-3±\sqrt{3^{2}-4\left(-\frac{1}{3}\right)\left(-3\right)}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-3±\sqrt{9-4\left(-\frac{1}{3}\right)\left(-3\right)}}{2\left(-\frac{1}{3}\right)}
Square 3.
m=\frac{-3±\sqrt{9+\frac{4}{3}\left(-3\right)}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
m=\frac{-3±\sqrt{9-4}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times -3.
m=\frac{-3±\sqrt{5}}{2\left(-\frac{1}{3}\right)}
Add 9 to -4.
m=\frac{-3±\sqrt{5}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
m=\frac{\sqrt{5}-3}{-\frac{2}{3}}
Now solve the equation m=\frac{-3±\sqrt{5}}{-\frac{2}{3}} when ± is plus. Add -3 to \sqrt{5}.
m=\frac{9-3\sqrt{5}}{2}
Divide -3+\sqrt{5} by -\frac{2}{3} by multiplying -3+\sqrt{5} by the reciprocal of -\frac{2}{3}.
m=\frac{-\sqrt{5}-3}{-\frac{2}{3}}
Now solve the equation m=\frac{-3±\sqrt{5}}{-\frac{2}{3}} when ± is minus. Subtract \sqrt{5} from -3.
m=\frac{3\sqrt{5}+9}{2}
Divide -3-\sqrt{5} by -\frac{2}{3} by multiplying -3-\sqrt{5} by the reciprocal of -\frac{2}{3}.
m=\frac{9-3\sqrt{5}}{2} m=\frac{3\sqrt{5}+9}{2}
The equation is now solved.
-\frac{1}{3}m^{2}+3m+3-3=3
Combine \frac{8}{3}m and \frac{1}{3}m to get 3m.
-\frac{1}{3}m^{2}+3m=3
Subtract 3 from 3 to get 0.
\frac{-\frac{1}{3}m^{2}+3m}{-\frac{1}{3}}=\frac{3}{-\frac{1}{3}}
Multiply both sides by -3.
m^{2}+\frac{3}{-\frac{1}{3}}m=\frac{3}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
m^{2}-9m=\frac{3}{-\frac{1}{3}}
Divide 3 by -\frac{1}{3} by multiplying 3 by the reciprocal of -\frac{1}{3}.
m^{2}-9m=-9
Divide 3 by -\frac{1}{3} by multiplying 3 by the reciprocal of -\frac{1}{3}.
m^{2}-9m+\left(-\frac{9}{2}\right)^{2}=-9+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-9m+\frac{81}{4}=-9+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-9m+\frac{81}{4}=\frac{45}{4}
Add -9 to \frac{81}{4}.
\left(m-\frac{9}{2}\right)^{2}=\frac{45}{4}
Factor m^{2}-9m+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{9}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
m-\frac{9}{2}=\frac{3\sqrt{5}}{2} m-\frac{9}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
m=\frac{3\sqrt{5}+9}{2} m=\frac{9-3\sqrt{5}}{2}
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}