Solve for a
a=2\sqrt{6}-2\approx 2.898979486
a=-2\sqrt{6}-2\approx -6.898979486
Share
Copied to clipboard
-\frac{1}{2}a^{2}-2a=-10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{1}{2}a^{2}-2a-\left(-10\right)=-10-\left(-10\right)
Add 10 to both sides of the equation.
-\frac{1}{2}a^{2}-2a-\left(-10\right)=0
Subtracting -10 from itself leaves 0.
-\frac{1}{2}a^{2}-2a+10=0
Subtract -10 from 0.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-\frac{1}{2}\right)\times 10}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -2 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-\frac{1}{2}\right)\times 10}}{2\left(-\frac{1}{2}\right)}
Square -2.
a=\frac{-\left(-2\right)±\sqrt{4+2\times 10}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
a=\frac{-\left(-2\right)±\sqrt{4+20}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 10.
a=\frac{-\left(-2\right)±\sqrt{24}}{2\left(-\frac{1}{2}\right)}
Add 4 to 20.
a=\frac{-\left(-2\right)±2\sqrt{6}}{2\left(-\frac{1}{2}\right)}
Take the square root of 24.
a=\frac{2±2\sqrt{6}}{2\left(-\frac{1}{2}\right)}
The opposite of -2 is 2.
a=\frac{2±2\sqrt{6}}{-1}
Multiply 2 times -\frac{1}{2}.
a=\frac{2\sqrt{6}+2}{-1}
Now solve the equation a=\frac{2±2\sqrt{6}}{-1} when ± is plus. Add 2 to 2\sqrt{6}.
a=-2\sqrt{6}-2
Divide 2+2\sqrt{6} by -1.
a=\frac{2-2\sqrt{6}}{-1}
Now solve the equation a=\frac{2±2\sqrt{6}}{-1} when ± is minus. Subtract 2\sqrt{6} from 2.
a=2\sqrt{6}-2
Divide 2-2\sqrt{6} by -1.
a=-2\sqrt{6}-2 a=2\sqrt{6}-2
The equation is now solved.
-\frac{1}{2}a^{2}-2a=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}a^{2}-2a}{-\frac{1}{2}}=-\frac{10}{-\frac{1}{2}}
Multiply both sides by -2.
a^{2}+\left(-\frac{2}{-\frac{1}{2}}\right)a=-\frac{10}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
a^{2}+4a=-\frac{10}{-\frac{1}{2}}
Divide -2 by -\frac{1}{2} by multiplying -2 by the reciprocal of -\frac{1}{2}.
a^{2}+4a=20
Divide -10 by -\frac{1}{2} by multiplying -10 by the reciprocal of -\frac{1}{2}.
a^{2}+4a+2^{2}=20+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+4a+4=20+4
Square 2.
a^{2}+4a+4=24
Add 20 to 4.
\left(a+2\right)^{2}=24
Factor a^{2}+4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
a+2=2\sqrt{6} a+2=-2\sqrt{6}
Simplify.
a=2\sqrt{6}-2 a=-2\sqrt{6}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}