Evaluate
-\frac{2x}{3}+y-\frac{11}{6}
Expand
-\frac{2x}{3}+y-\frac{11}{6}
Share
Copied to clipboard
-\frac{1}{2}\times 4x-\frac{1}{2}\left(-2\right)y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Use the distributive property to multiply -\frac{1}{2} by 4x-2y+3.
\frac{-4}{2}x-\frac{1}{2}\left(-2\right)y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Express -\frac{1}{2}\times 4 as a single fraction.
-2x-\frac{1}{2}\left(-2\right)y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Divide -4 by 2 to get -2.
-2x+\frac{-\left(-2\right)}{2}y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Express -\frac{1}{2}\left(-2\right) as a single fraction.
-2x+\frac{2}{2}y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Multiply -1 and -2 to get 2.
-2x+1y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Divide 2 by 2 to get 1.
-2x+1y+\frac{-3}{2}-\frac{1}{3}\left(-4x+1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
-2x+1y-\frac{3}{2}-\frac{1}{3}\left(-4x+1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-2x+1y-\frac{3}{2}-\frac{1}{3}\left(-4\right)x-\frac{1}{3}
Use the distributive property to multiply -\frac{1}{3} by -4x+1.
-2x+1y-\frac{3}{2}+\frac{-\left(-4\right)}{3}x-\frac{1}{3}
Express -\frac{1}{3}\left(-4\right) as a single fraction.
-2x+1y-\frac{3}{2}+\frac{4}{3}x-\frac{1}{3}
Multiply -1 and -4 to get 4.
-\frac{2}{3}x+1y-\frac{3}{2}-\frac{1}{3}
Combine -2x and \frac{4}{3}x to get -\frac{2}{3}x.
-\frac{2}{3}x+1y-\frac{9}{6}-\frac{2}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
-\frac{2}{3}x+1y+\frac{-9-2}{6}
Since -\frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x+1y-\frac{11}{6}
Subtract 2 from -9 to get -11.
-\frac{2}{3}x+y-\frac{11}{6}
For any term t, t\times 1=t and 1t=t.
-\frac{1}{2}\times 4x-\frac{1}{2}\left(-2\right)y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Use the distributive property to multiply -\frac{1}{2} by 4x-2y+3.
\frac{-4}{2}x-\frac{1}{2}\left(-2\right)y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Express -\frac{1}{2}\times 4 as a single fraction.
-2x-\frac{1}{2}\left(-2\right)y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Divide -4 by 2 to get -2.
-2x+\frac{-\left(-2\right)}{2}y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Express -\frac{1}{2}\left(-2\right) as a single fraction.
-2x+\frac{2}{2}y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Multiply -1 and -2 to get 2.
-2x+1y-\frac{1}{2}\times 3-\frac{1}{3}\left(-4x+1\right)
Divide 2 by 2 to get 1.
-2x+1y+\frac{-3}{2}-\frac{1}{3}\left(-4x+1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
-2x+1y-\frac{3}{2}-\frac{1}{3}\left(-4x+1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-2x+1y-\frac{3}{2}-\frac{1}{3}\left(-4\right)x-\frac{1}{3}
Use the distributive property to multiply -\frac{1}{3} by -4x+1.
-2x+1y-\frac{3}{2}+\frac{-\left(-4\right)}{3}x-\frac{1}{3}
Express -\frac{1}{3}\left(-4\right) as a single fraction.
-2x+1y-\frac{3}{2}+\frac{4}{3}x-\frac{1}{3}
Multiply -1 and -4 to get 4.
-\frac{2}{3}x+1y-\frac{3}{2}-\frac{1}{3}
Combine -2x and \frac{4}{3}x to get -\frac{2}{3}x.
-\frac{2}{3}x+1y-\frac{9}{6}-\frac{2}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
-\frac{2}{3}x+1y+\frac{-9-2}{6}
Since -\frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x+1y-\frac{11}{6}
Subtract 2 from -9 to get -11.
-\frac{2}{3}x+y-\frac{11}{6}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}