Solve for y
y = \frac{3}{10} = 0.3
Solve for x (complex solution)
x\in \mathrm{C}
y = \frac{3}{10} = 0.3
Solve for x
x\in \mathrm{R}
y = \frac{3}{10} = 0.3
Graph
Share
Copied to clipboard
-x+5y+\frac{3}{2}=-x+10y
Use the distributive property to multiply -\frac{1}{2} by 2x-10y-3.
-x+5y+\frac{3}{2}-10y=-x
Subtract 10y from both sides.
-x-5y+\frac{3}{2}=-x
Combine 5y and -10y to get -5y.
-5y+\frac{3}{2}=-x+x
Add x to both sides.
-5y+\frac{3}{2}=0
Combine -x and x to get 0.
-5y=-\frac{3}{2}
Subtract \frac{3}{2} from both sides. Anything subtracted from zero gives its negation.
y=\frac{-\frac{3}{2}}{-5}
Divide both sides by -5.
y=\frac{-3}{2\left(-5\right)}
Express \frac{-\frac{3}{2}}{-5} as a single fraction.
y=\frac{-3}{-10}
Multiply 2 and -5 to get -10.
y=\frac{3}{10}
Fraction \frac{-3}{-10} can be simplified to \frac{3}{10} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}