Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\frac{1}{2}\left(\frac{2}{2}+\frac{\sqrt{2}}{2}\right)^{2}+2\left(1+\frac{\sqrt{2}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
-\frac{1}{2}\times \left(\frac{2+\sqrt{2}}{2}\right)^{2}+2\left(1+\frac{\sqrt{2}}{2}\right)
Since \frac{2}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
-\frac{1}{2}\times \frac{\left(2+\sqrt{2}\right)^{2}}{2^{2}}+2\left(1+\frac{\sqrt{2}}{2}\right)
To raise \frac{2+\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\left(2+\sqrt{2}\right)^{2}}{2\times 2^{2}}+2\left(1+\frac{\sqrt{2}}{2}\right)
Multiply -\frac{1}{2} times \frac{\left(2+\sqrt{2}\right)^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(2+\sqrt{2}\right)^{2}}{2\times 2^{2}}+2\left(\frac{2}{2}+\frac{\sqrt{2}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{-\left(2+\sqrt{2}\right)^{2}}{2\times 2^{2}}+2\times \frac{2+\sqrt{2}}{2}
Since \frac{2}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{-\left(2+\sqrt{2}\right)^{2}}{2\times 2^{2}}+2+\sqrt{2}
Cancel out 2 and 2.
\frac{-\left(2+\sqrt{2}\right)^{2}}{2\times 2^{2}}+\frac{\left(2+\sqrt{2}\right)\times 2\times 2^{2}}{2\times 2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+\sqrt{2} times \frac{2\times 2^{2}}{2\times 2^{2}}.
\frac{-\left(2+\sqrt{2}\right)^{2}+\left(2+\sqrt{2}\right)\times 2\times 2^{2}}{2\times 2^{2}}
Since \frac{-\left(2+\sqrt{2}\right)^{2}}{2\times 2^{2}} and \frac{\left(2+\sqrt{2}\right)\times 2\times 2^{2}}{2\times 2^{2}} have the same denominator, add them by adding their numerators.
\frac{-\left(2+\sqrt{2}\right)^{2}}{2^{3}}+2+\sqrt{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{-\left(4+4\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)}{2^{3}}+2+\sqrt{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{2}\right)^{2}.
\frac{-\left(4+4\sqrt{2}+2\right)}{2^{3}}+2+\sqrt{2}
The square of \sqrt{2} is 2.
\frac{-\left(6+4\sqrt{2}\right)}{2^{3}}+2+\sqrt{2}
Add 4 and 2 to get 6.
\frac{-\left(6+4\sqrt{2}\right)}{8}+2+\sqrt{2}
Calculate 2 to the power of 3 and get 8.
\frac{-\left(6+4\sqrt{2}\right)}{8}+\frac{8\left(2+\sqrt{2}\right)}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+\sqrt{2} times \frac{8}{8}.
\frac{-\left(6+4\sqrt{2}\right)+8\left(2+\sqrt{2}\right)}{8}
Since \frac{-\left(6+4\sqrt{2}\right)}{8} and \frac{8\left(2+\sqrt{2}\right)}{8} have the same denominator, add them by adding their numerators.
\frac{-6-4\sqrt{2}+16+8\sqrt{2}}{8}
Do the multiplications in -\left(6+4\sqrt{2}\right)+8\left(2+\sqrt{2}\right).
\frac{10+4\sqrt{2}}{8}
Do the calculations in -6-4\sqrt{2}+16+8\sqrt{2}.