Evaluate
-\frac{23}{15}\approx -1.533333333
Factor
-\frac{23}{15} = -1\frac{8}{15} = -1.5333333333333334
Share
Copied to clipboard
-\frac{3}{6}+\frac{2}{6}-\left(\frac{1}{4}-2+\frac{1}{5}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{-3+2}{6}-\left(\frac{1}{4}-2+\frac{1}{5}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Since -\frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{6}-\left(\frac{1}{4}-2+\frac{1}{5}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Add -3 and 2 to get -1.
-\frac{1}{6}-\left(\frac{1}{4}-\frac{8}{4}+\frac{1}{5}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Convert 2 to fraction \frac{8}{4}.
-\frac{1}{6}-\left(\frac{1-8}{4}+\frac{1}{5}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Since \frac{1}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}-\left(-\frac{7}{4}+\frac{1}{5}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Subtract 8 from 1 to get -7.
-\frac{1}{6}-\left(-\frac{35}{20}+\frac{4}{20}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Least common multiple of 4 and 5 is 20. Convert -\frac{7}{4} and \frac{1}{5} to fractions with denominator 20.
-\frac{1}{6}-\left(\frac{-35+4}{20}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Since -\frac{35}{20} and \frac{4}{20} have the same denominator, add them by adding their numerators.
-\frac{1}{6}-\left(-\frac{31}{20}+3-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Add -35 and 4 to get -31.
-\frac{1}{6}-\left(-\frac{31}{20}+\frac{60}{20}-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Convert 3 to fraction \frac{60}{20}.
-\frac{1}{6}-\left(\frac{-31+60}{20}-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Since -\frac{31}{20} and \frac{60}{20} have the same denominator, add them by adding their numerators.
-\frac{1}{6}-\left(\frac{29}{20}-\frac{1}{4}-\frac{1}{2}+\frac{2}{3}\right)
Add -31 and 60 to get 29.
-\frac{1}{6}-\left(\frac{29}{20}-\frac{5}{20}-\frac{1}{2}+\frac{2}{3}\right)
Least common multiple of 20 and 4 is 20. Convert \frac{29}{20} and \frac{1}{4} to fractions with denominator 20.
-\frac{1}{6}-\left(\frac{29-5}{20}-\frac{1}{2}+\frac{2}{3}\right)
Since \frac{29}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}-\left(\frac{24}{20}-\frac{1}{2}+\frac{2}{3}\right)
Subtract 5 from 29 to get 24.
-\frac{1}{6}-\left(\frac{6}{5}-\frac{1}{2}+\frac{2}{3}\right)
Reduce the fraction \frac{24}{20} to lowest terms by extracting and canceling out 4.
-\frac{1}{6}-\left(\frac{12}{10}-\frac{5}{10}+\frac{2}{3}\right)
Least common multiple of 5 and 2 is 10. Convert \frac{6}{5} and \frac{1}{2} to fractions with denominator 10.
-\frac{1}{6}-\left(\frac{12-5}{10}+\frac{2}{3}\right)
Since \frac{12}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}-\left(\frac{7}{10}+\frac{2}{3}\right)
Subtract 5 from 12 to get 7.
-\frac{1}{6}-\left(\frac{21}{30}+\frac{20}{30}\right)
Least common multiple of 10 and 3 is 30. Convert \frac{7}{10} and \frac{2}{3} to fractions with denominator 30.
-\frac{1}{6}-\frac{21+20}{30}
Since \frac{21}{30} and \frac{20}{30} have the same denominator, add them by adding their numerators.
-\frac{1}{6}-\frac{41}{30}
Add 21 and 20 to get 41.
-\frac{5}{30}-\frac{41}{30}
Least common multiple of 6 and 30 is 30. Convert -\frac{1}{6} and \frac{41}{30} to fractions with denominator 30.
\frac{-5-41}{30}
Since -\frac{5}{30} and \frac{41}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{-46}{30}
Subtract 41 from -5 to get -46.
-\frac{23}{15}
Reduce the fraction \frac{-46}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}