- \frac { } { 2 } = \frac { } { 5 } v - \frac { 1 } { 7 }
Solve for v
v = -\frac{25}{14} = -1\frac{11}{14} \approx -1.785714286
Share
Copied to clipboard
\frac{1}{5}v-\frac{1}{7}=-\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{5}v=-\frac{1}{2}+\frac{1}{7}
Add \frac{1}{7} to both sides.
\frac{1}{5}v=-\frac{7}{14}+\frac{2}{14}
Least common multiple of 2 and 7 is 14. Convert -\frac{1}{2} and \frac{1}{7} to fractions with denominator 14.
\frac{1}{5}v=\frac{-7+2}{14}
Since -\frac{7}{14} and \frac{2}{14} have the same denominator, add them by adding their numerators.
\frac{1}{5}v=-\frac{5}{14}
Add -7 and 2 to get -5.
v=-\frac{5}{14}\times 5
Multiply both sides by 5, the reciprocal of \frac{1}{5}.
v=\frac{-5\times 5}{14}
Express -\frac{5}{14}\times 5 as a single fraction.
v=\frac{-25}{14}
Multiply -5 and 5 to get -25.
v=-\frac{25}{14}
Fraction \frac{-25}{14} can be rewritten as -\frac{25}{14} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}