Evaluate
-\frac{\sqrt{21}}{8}\approx -0.572821962
Share
Copied to clipboard
-\frac{\frac{1}{2}}{\sqrt{\frac{16}{21}}}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
-\frac{\frac{1}{2}}{\frac{\sqrt{16}}{\sqrt{21}}}
Rewrite the square root of the division \sqrt{\frac{16}{21}} as the division of square roots \frac{\sqrt{16}}{\sqrt{21}}.
-\frac{\frac{1}{2}}{\frac{4}{\sqrt{21}}}
Calculate the square root of 16 and get 4.
-\frac{\frac{1}{2}}{\frac{4\sqrt{21}}{\left(\sqrt{21}\right)^{2}}}
Rationalize the denominator of \frac{4}{\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
-\frac{\frac{1}{2}}{\frac{4\sqrt{21}}{21}}
The square of \sqrt{21} is 21.
-\frac{21}{2\times 4\sqrt{21}}
Divide \frac{1}{2} by \frac{4\sqrt{21}}{21} by multiplying \frac{1}{2} by the reciprocal of \frac{4\sqrt{21}}{21}.
-\frac{21\sqrt{21}}{2\times 4\left(\sqrt{21}\right)^{2}}
Rationalize the denominator of \frac{21}{2\times 4\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
-\frac{21\sqrt{21}}{2\times 4\times 21}
The square of \sqrt{21} is 21.
-\frac{\sqrt{21}}{2\times 4}
Cancel out 21 in both numerator and denominator.
-\frac{\sqrt{21}}{8}
Multiply 2 and 4 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}