Skip to main content
Evaluate
Tick mark Image

Share

-\frac{\frac{\sqrt{3}}{2}+2\sin(30)+3\sin(45)}{\sqrt{2}}
Get the value of \sin(60) from trigonometric values table.
-\frac{\frac{\sqrt{3}}{2}+2\times \frac{1}{2}+3\sin(45)}{\sqrt{2}}
Get the value of \sin(30) from trigonometric values table.
-\frac{\frac{\sqrt{3}}{2}+1+3\sin(45)}{\sqrt{2}}
Multiply 2 and \frac{1}{2} to get 1.
-\frac{\frac{\sqrt{3}}{2}+1+3\times \frac{\sqrt{2}}{2}}{\sqrt{2}}
Get the value of \sin(45) from trigonometric values table.
-\frac{\frac{\sqrt{3}}{2}+1+\frac{3\sqrt{2}}{2}}{\sqrt{2}}
Express 3\times \frac{\sqrt{2}}{2} as a single fraction.
-\frac{\frac{\sqrt{3}}{2}+\frac{2}{2}+\frac{3\sqrt{2}}{2}}{\sqrt{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
-\frac{\frac{\sqrt{3}+2}{2}+\frac{3\sqrt{2}}{2}}{\sqrt{2}}
Since \frac{\sqrt{3}}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
-\frac{\frac{\sqrt{3}+2+3\sqrt{2}}{2}}{\sqrt{2}}
Since \frac{\sqrt{3}+2}{2} and \frac{3\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
-\frac{\sqrt{3}+2+3\sqrt{2}}{2\sqrt{2}}
Express \frac{\frac{\sqrt{3}+2+3\sqrt{2}}{2}}{\sqrt{2}} as a single fraction.
-\frac{\left(\sqrt{3}+2+3\sqrt{2}\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}+2+3\sqrt{2}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
-\frac{\left(\sqrt{3}+2+3\sqrt{2}\right)\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
-\frac{\left(\sqrt{3}+2+3\sqrt{2}\right)\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
-\frac{\sqrt{3}\sqrt{2}+2\sqrt{2}+3\left(\sqrt{2}\right)^{2}}{4}
Use the distributive property to multiply \sqrt{3}+2+3\sqrt{2} by \sqrt{2}.
-\frac{\sqrt{6}+2\sqrt{2}+3\left(\sqrt{2}\right)^{2}}{4}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-\frac{\sqrt{6}+2\sqrt{2}+3\times 2}{4}
The square of \sqrt{2} is 2.
-\frac{\sqrt{6}+2\sqrt{2}+6}{4}
Multiply 3 and 2 to get 6.