Evaluate
-\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{4}-\frac{3}{2}\approx -2.819479217
Share
Copied to clipboard
-\frac{\frac{\sqrt{3}}{2}+2\sin(30)+3\sin(45)}{\sqrt{2}}
Get the value of \sin(60) from trigonometric values table.
-\frac{\frac{\sqrt{3}}{2}+2\times \frac{1}{2}+3\sin(45)}{\sqrt{2}}
Get the value of \sin(30) from trigonometric values table.
-\frac{\frac{\sqrt{3}}{2}+1+3\sin(45)}{\sqrt{2}}
Multiply 2 and \frac{1}{2} to get 1.
-\frac{\frac{\sqrt{3}}{2}+1+3\times \frac{\sqrt{2}}{2}}{\sqrt{2}}
Get the value of \sin(45) from trigonometric values table.
-\frac{\frac{\sqrt{3}}{2}+1+\frac{3\sqrt{2}}{2}}{\sqrt{2}}
Express 3\times \frac{\sqrt{2}}{2} as a single fraction.
-\frac{\frac{\sqrt{3}}{2}+\frac{2}{2}+\frac{3\sqrt{2}}{2}}{\sqrt{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
-\frac{\frac{\sqrt{3}+2}{2}+\frac{3\sqrt{2}}{2}}{\sqrt{2}}
Since \frac{\sqrt{3}}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
-\frac{\frac{\sqrt{3}+2+3\sqrt{2}}{2}}{\sqrt{2}}
Since \frac{\sqrt{3}+2}{2} and \frac{3\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
-\frac{\sqrt{3}+2+3\sqrt{2}}{2\sqrt{2}}
Express \frac{\frac{\sqrt{3}+2+3\sqrt{2}}{2}}{\sqrt{2}} as a single fraction.
-\frac{\left(\sqrt{3}+2+3\sqrt{2}\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}+2+3\sqrt{2}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
-\frac{\left(\sqrt{3}+2+3\sqrt{2}\right)\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
-\frac{\left(\sqrt{3}+2+3\sqrt{2}\right)\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
-\frac{\sqrt{3}\sqrt{2}+2\sqrt{2}+3\left(\sqrt{2}\right)^{2}}{4}
Use the distributive property to multiply \sqrt{3}+2+3\sqrt{2} by \sqrt{2}.
-\frac{\sqrt{6}+2\sqrt{2}+3\left(\sqrt{2}\right)^{2}}{4}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-\frac{\sqrt{6}+2\sqrt{2}+3\times 2}{4}
The square of \sqrt{2} is 2.
-\frac{\sqrt{6}+2\sqrt{2}+6}{4}
Multiply 3 and 2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}