Evaluate
-\frac{7}{4}=-1.75
Factor
-\frac{7}{4} = -1\frac{3}{4} = -1.75
Share
Copied to clipboard
-\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}\left(\sin(\frac{\pi }{4})\right)^{2}-\frac{1}{2}\cos(\frac{\pi }{3})-\tan(\frac{\pi }{4})
Get the value of \cos(\frac{\pi }{6}) from trigonometric values table.
-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{2}\left(\sin(\frac{\pi }{4})\right)^{2}-\frac{1}{2}\cos(\frac{\pi }{3})-\tan(\frac{\pi }{4})
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{2}\times \left(\frac{\sqrt{2}}{2}\right)^{2}-\frac{1}{2}\cos(\frac{\pi }{3})-\tan(\frac{\pi }{4})
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{2}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{2}\cos(\frac{\pi }{3})-\tan(\frac{\pi }{4})
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2\times 2^{2}}-\frac{1}{2}\cos(\frac{\pi }{3})-\tan(\frac{\pi }{4})
Multiply \frac{1}{2} times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
-\frac{2\left(\sqrt{3}\right)^{2}}{2\times 2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2\times 2^{2}}-\frac{1}{2}\cos(\frac{\pi }{3})-\tan(\frac{\pi }{4})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 2\times 2^{2} is 2\times 2^{2}. Multiply -\frac{\left(\sqrt{3}\right)^{2}}{2^{2}} times \frac{2}{2}.
\frac{-2\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2\times 2^{2}}-\frac{1}{2}\cos(\frac{\pi }{3})-\tan(\frac{\pi }{4})
Since -\frac{2\left(\sqrt{3}\right)^{2}}{2\times 2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2\times 2^{2}} have the same denominator, add them by adding their numerators.
\frac{-2\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2\times 2^{2}}-\frac{1}{2}\times \frac{1}{2}-\tan(\frac{\pi }{4})
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
\frac{-2\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2\times 2^{2}}-\frac{1}{4}-\tan(\frac{\pi }{4})
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\frac{-2\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{8}-\frac{2}{8}-\tan(\frac{\pi }{4})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2^{2} and 4 is 8. Multiply \frac{1}{4} times \frac{2}{2}.
\frac{-2\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}-2}{8}-\tan(\frac{\pi }{4})
Since \frac{-2\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{8} and \frac{2}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-2\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}-2}{8}-1
Get the value of \tan(\frac{\pi }{4}) from trigonometric values table.
\frac{-2\times 3+\left(\sqrt{2}\right)^{2}-2}{8}-1
The square of \sqrt{3} is 3.
\frac{-6+\left(\sqrt{2}\right)^{2}-2}{8}-1
Multiply -2 and 3 to get -6.
\frac{-6+2-2}{8}-1
The square of \sqrt{2} is 2.
\frac{-4-2}{8}-1
Add -6 and 2 to get -4.
\frac{-6}{8}-1
Subtract 2 from -4 to get -6.
-\frac{3}{4}-1
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
-\frac{7}{4}
Subtract 1 from -\frac{3}{4} to get -\frac{7}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}