Evaluate
-\frac{3229}{2835}\approx -1.138977072
Factor
-\frac{3229}{2835} = -1\frac{394}{2835} = -1.1389770723104056
Share
Copied to clipboard
\left(-\left(\frac{45}{63}-\frac{7}{63}\right)\right)\times \frac{7}{5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Least common multiple of 7 and 9 is 63. Convert \frac{5}{7} and \frac{1}{9} to fractions with denominator 63.
\left(-\frac{45-7}{63}\right)\times \frac{7}{5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Since \frac{45}{63} and \frac{7}{63} have the same denominator, subtract them by subtracting their numerators.
-\frac{38}{63}\times \frac{7}{5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Subtract 7 from 45 to get 38.
\frac{-38\times 7}{63\times 5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Multiply -\frac{38}{63} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-266}{315}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Do the multiplications in the fraction \frac{-38\times 7}{63\times 5}.
-\frac{38}{45}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Reduce the fraction \frac{-266}{315} to lowest terms by extracting and canceling out 7.
-\frac{266}{315}-\frac{225}{315}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Least common multiple of 45 and 7 is 315. Convert -\frac{38}{45} and \frac{5}{7} to fractions with denominator 315.
\frac{-266-225}{315}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Since -\frac{266}{315} and \frac{225}{315} have the same denominator, subtract them by subtracting their numerators.
-\frac{491}{315}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Subtract 225 from -266 to get -491.
-\frac{491}{315}+\left(-\frac{2}{9}+4\right)\times \frac{1}{9}
Calculate the square root of 16 and get 4.
-\frac{491}{315}+\left(-\frac{2}{9}+\frac{36}{9}\right)\times \frac{1}{9}
Convert 4 to fraction \frac{36}{9}.
-\frac{491}{315}+\frac{-2+36}{9}\times \frac{1}{9}
Since -\frac{2}{9} and \frac{36}{9} have the same denominator, add them by adding their numerators.
-\frac{491}{315}+\frac{34}{9}\times \frac{1}{9}
Add -2 and 36 to get 34.
-\frac{491}{315}+\frac{34\times 1}{9\times 9}
Multiply \frac{34}{9} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
-\frac{491}{315}+\frac{34}{81}
Do the multiplications in the fraction \frac{34\times 1}{9\times 9}.
-\frac{4419}{2835}+\frac{1190}{2835}
Least common multiple of 315 and 81 is 2835. Convert -\frac{491}{315} and \frac{34}{81} to fractions with denominator 2835.
\frac{-4419+1190}{2835}
Since -\frac{4419}{2835} and \frac{1190}{2835} have the same denominator, add them by adding their numerators.
-\frac{3229}{2835}
Add -4419 and 1190 to get -3229.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}