Evaluate
\frac{11}{8}=1.375
Factor
\frac{11}{2 ^ {3}} = 1\frac{3}{8} = 1.375
Share
Copied to clipboard
-\frac{1}{2}\left(\frac{1}{4}+1^{3}-4\right)
Calculate -1 to the power of 4 and get 1.
-\frac{1}{2}\left(\frac{1}{4}+1-4\right)
Calculate 1 to the power of 3 and get 1.
-\frac{1}{2}\left(\frac{1}{4}+\frac{4}{4}-4\right)
Convert 1 to fraction \frac{4}{4}.
-\frac{1}{2}\left(\frac{1+4}{4}-4\right)
Since \frac{1}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
-\frac{1}{2}\left(\frac{5}{4}-4\right)
Add 1 and 4 to get 5.
-\frac{1}{2}\left(\frac{5}{4}-\frac{16}{4}\right)
Convert 4 to fraction \frac{16}{4}.
-\frac{1}{2}\times \frac{5-16}{4}
Since \frac{5}{4} and \frac{16}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}\left(-\frac{11}{4}\right)
Subtract 16 from 5 to get -11.
-\frac{1\left(-11\right)}{2\times 4}
Multiply \frac{1}{2} times -\frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{-11}{8}
Do the multiplications in the fraction \frac{1\left(-11\right)}{2\times 4}.
-\left(-\frac{11}{8}\right)
Fraction \frac{-11}{8} can be rewritten as -\frac{11}{8} by extracting the negative sign.
\frac{11}{8}
The opposite of -\frac{11}{8} is \frac{11}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}