Evaluate
0
Factor
0
Share
Copied to clipboard
xz-\left(xy+xz-y^{2}-yz\right)-y\left(y-\left(x-z\right)\right)
Apply the distributive property by multiplying each term of x-y by each term of y+z.
xz-xy-xz-\left(-y^{2}\right)-\left(-yz\right)-y\left(y-\left(x-z\right)\right)
To find the opposite of xy+xz-y^{2}-yz, find the opposite of each term.
-xy-\left(-y^{2}\right)-\left(-yz\right)-y\left(y-\left(x-z\right)\right)
Combine xz and -xz to get 0.
-xy+y^{2}-\left(-yz\right)-y\left(y-\left(x-z\right)\right)
The opposite of -y^{2} is y^{2}.
-xy+y^{2}+yz-y\left(y-\left(x-z\right)\right)
The opposite of -yz is yz.
-xy+y^{2}+yz-y\left(y-x-\left(-z\right)\right)
To find the opposite of x-z, find the opposite of each term.
-xy+y^{2}+yz-y\left(y-x+z\right)
The opposite of -z is z.
-xy+y^{2}+yz-\left(y^{2}-yx+yz\right)
Use the distributive property to multiply y by y-x+z.
0
Combine -xy+y^{2}+yz and -\left(y^{2}-yx+yz\right) to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}