Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x}{23.8}+\frac{-55}{23.8}\right)\times 10+50=60
Divide each term of x-55 by 23.8 to get \frac{x}{23.8}+\frac{-55}{23.8}.
\left(\frac{x}{23.8}+\frac{-550}{238}\right)\times 10+50=60
Expand \frac{-55}{23.8} by multiplying both numerator and the denominator by 10.
\left(\frac{x}{23.8}-\frac{275}{119}\right)\times 10+50=60
Reduce the fraction \frac{-550}{238} to lowest terms by extracting and canceling out 2.
10\times \frac{x}{23.8}-\frac{275}{119}\times 10+50=60
Use the distributive property to multiply \frac{x}{23.8}-\frac{275}{119} by 10.
10\times \frac{x}{23.8}+\frac{-275\times 10}{119}+50=60
Express -\frac{275}{119}\times 10 as a single fraction.
10\times \frac{x}{23.8}+\frac{-2750}{119}+50=60
Multiply -275 and 10 to get -2750.
10\times \frac{x}{23.8}-\frac{2750}{119}+50=60
Fraction \frac{-2750}{119} can be rewritten as -\frac{2750}{119} by extracting the negative sign.
10\times \frac{x}{23.8}-\frac{2750}{119}+\frac{5950}{119}=60
Convert 50 to fraction \frac{5950}{119}.
10\times \frac{x}{23.8}+\frac{-2750+5950}{119}=60
Since -\frac{2750}{119} and \frac{5950}{119} have the same denominator, add them by adding their numerators.
10\times \frac{x}{23.8}+\frac{3200}{119}=60
Add -2750 and 5950 to get 3200.
10\times \frac{x}{23.8}=60-\frac{3200}{119}
Subtract \frac{3200}{119} from both sides.
10\times \frac{x}{23.8}=\frac{7140}{119}-\frac{3200}{119}
Convert 60 to fraction \frac{7140}{119}.
10\times \frac{x}{23.8}=\frac{7140-3200}{119}
Since \frac{7140}{119} and \frac{3200}{119} have the same denominator, subtract them by subtracting their numerators.
10\times \frac{x}{23.8}=\frac{3940}{119}
Subtract 3200 from 7140 to get 3940.
\frac{x}{23.8}=\frac{\frac{3940}{119}}{10}
Divide both sides by 10.
\frac{x}{23.8}=\frac{3940}{119\times 10}
Express \frac{\frac{3940}{119}}{10} as a single fraction.
\frac{x}{23.8}=\frac{3940}{1190}
Multiply 119 and 10 to get 1190.
\frac{x}{23.8}=\frac{394}{119}
Reduce the fraction \frac{3940}{1190} to lowest terms by extracting and canceling out 10.
x=\frac{394}{119}\times 23.8
Multiply both sides by 23.8.
x=\frac{394}{119}\times \frac{119}{5}
Convert decimal number 23.8 to fraction \frac{238}{10}. Reduce the fraction \frac{238}{10} to lowest terms by extracting and canceling out 2.
x=\frac{394\times 119}{119\times 5}
Multiply \frac{394}{119} times \frac{119}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{394}{5}
Cancel out 119 in both numerator and denominator.