Solve for x
x=\frac{29-3y}{4}
Solve for y
y=\frac{29-4x}{3}
Graph
Share
Copied to clipboard
\frac{x-5}{-9}=\frac{y-3}{15-3}
Subtract 5 from -4 to get -9.
\frac{-x+5}{9}=\frac{y-3}{15-3}
Multiply both numerator and denominator by -1.
\frac{-x+5}{9}=\frac{y-3}{12}
Subtract 3 from 15 to get 12.
-\frac{1}{9}x+\frac{5}{9}=\frac{y-3}{12}
Divide each term of -x+5 by 9 to get -\frac{1}{9}x+\frac{5}{9}.
-\frac{1}{9}x+\frac{5}{9}=\frac{1}{12}y-\frac{1}{4}
Divide each term of y-3 by 12 to get \frac{1}{12}y-\frac{1}{4}.
-\frac{1}{9}x=\frac{1}{12}y-\frac{1}{4}-\frac{5}{9}
Subtract \frac{5}{9} from both sides.
-\frac{1}{9}x=\frac{1}{12}y-\frac{29}{36}
Subtract \frac{5}{9} from -\frac{1}{4} to get -\frac{29}{36}.
-\frac{1}{9}x=\frac{y}{12}-\frac{29}{36}
The equation is in standard form.
\frac{-\frac{1}{9}x}{-\frac{1}{9}}=\frac{\frac{y}{12}-\frac{29}{36}}{-\frac{1}{9}}
Multiply both sides by -9.
x=\frac{\frac{y}{12}-\frac{29}{36}}{-\frac{1}{9}}
Dividing by -\frac{1}{9} undoes the multiplication by -\frac{1}{9}.
x=\frac{29-3y}{4}
Divide \frac{y}{12}-\frac{29}{36} by -\frac{1}{9} by multiplying \frac{y}{12}-\frac{29}{36} by the reciprocal of -\frac{1}{9}.
\frac{x-5}{-9}=\frac{y-3}{15-3}
Subtract 5 from -4 to get -9.
\frac{-x+5}{9}=\frac{y-3}{15-3}
Multiply both numerator and denominator by -1.
\frac{-x+5}{9}=\frac{y-3}{12}
Subtract 3 from 15 to get 12.
-\frac{1}{9}x+\frac{5}{9}=\frac{y-3}{12}
Divide each term of -x+5 by 9 to get -\frac{1}{9}x+\frac{5}{9}.
-\frac{1}{9}x+\frac{5}{9}=\frac{1}{12}y-\frac{1}{4}
Divide each term of y-3 by 12 to get \frac{1}{12}y-\frac{1}{4}.
\frac{1}{12}y-\frac{1}{4}=-\frac{1}{9}x+\frac{5}{9}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{12}y=-\frac{1}{9}x+\frac{5}{9}+\frac{1}{4}
Add \frac{1}{4} to both sides.
\frac{1}{12}y=-\frac{1}{9}x+\frac{29}{36}
Add \frac{5}{9} and \frac{1}{4} to get \frac{29}{36}.
\frac{1}{12}y=-\frac{x}{9}+\frac{29}{36}
The equation is in standard form.
\frac{\frac{1}{12}y}{\frac{1}{12}}=\frac{-\frac{x}{9}+\frac{29}{36}}{\frac{1}{12}}
Multiply both sides by 12.
y=\frac{-\frac{x}{9}+\frac{29}{36}}{\frac{1}{12}}
Dividing by \frac{1}{12} undoes the multiplication by \frac{1}{12}.
y=\frac{29-4x}{3}
Divide -\frac{x}{9}+\frac{29}{36} by \frac{1}{12} by multiplying -\frac{x}{9}+\frac{29}{36} by the reciprocal of \frac{1}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}