Solve for x
x=51
x=59
Graph
Share
Copied to clipboard
-30x^{2}+3300x-84000=6270
Use the distributive property to multiply x-40 by -30x+2100 and combine like terms.
-30x^{2}+3300x-84000-6270=0
Subtract 6270 from both sides.
-30x^{2}+3300x-90270=0
Subtract 6270 from -84000 to get -90270.
x=\frac{-3300±\sqrt{3300^{2}-4\left(-30\right)\left(-90270\right)}}{2\left(-30\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30 for a, 3300 for b, and -90270 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3300±\sqrt{10890000-4\left(-30\right)\left(-90270\right)}}{2\left(-30\right)}
Square 3300.
x=\frac{-3300±\sqrt{10890000+120\left(-90270\right)}}{2\left(-30\right)}
Multiply -4 times -30.
x=\frac{-3300±\sqrt{10890000-10832400}}{2\left(-30\right)}
Multiply 120 times -90270.
x=\frac{-3300±\sqrt{57600}}{2\left(-30\right)}
Add 10890000 to -10832400.
x=\frac{-3300±240}{2\left(-30\right)}
Take the square root of 57600.
x=\frac{-3300±240}{-60}
Multiply 2 times -30.
x=-\frac{3060}{-60}
Now solve the equation x=\frac{-3300±240}{-60} when ± is plus. Add -3300 to 240.
x=51
Divide -3060 by -60.
x=-\frac{3540}{-60}
Now solve the equation x=\frac{-3300±240}{-60} when ± is minus. Subtract 240 from -3300.
x=59
Divide -3540 by -60.
x=51 x=59
The equation is now solved.
-30x^{2}+3300x-84000=6270
Use the distributive property to multiply x-40 by -30x+2100 and combine like terms.
-30x^{2}+3300x=6270+84000
Add 84000 to both sides.
-30x^{2}+3300x=90270
Add 6270 and 84000 to get 90270.
\frac{-30x^{2}+3300x}{-30}=\frac{90270}{-30}
Divide both sides by -30.
x^{2}+\frac{3300}{-30}x=\frac{90270}{-30}
Dividing by -30 undoes the multiplication by -30.
x^{2}-110x=\frac{90270}{-30}
Divide 3300 by -30.
x^{2}-110x=-3009
Divide 90270 by -30.
x^{2}-110x+\left(-55\right)^{2}=-3009+\left(-55\right)^{2}
Divide -110, the coefficient of the x term, by 2 to get -55. Then add the square of -55 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-110x+3025=-3009+3025
Square -55.
x^{2}-110x+3025=16
Add -3009 to 3025.
\left(x-55\right)^{2}=16
Factor x^{2}-110x+3025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-55\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-55=4 x-55=-4
Simplify.
x=59 x=51
Add 55 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}