Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-5x+6=\left(x+4\right)\left(2-x\right)-14
Use the distributive property to multiply x-3 by x-2 and combine like terms.
x^{2}-5x+6=-2x-x^{2}+8-14
Use the distributive property to multiply x+4 by 2-x and combine like terms.
x^{2}-5x+6=-2x-x^{2}-6
Subtract 14 from 8 to get -6.
x^{2}-5x+6+2x=-x^{2}-6
Add 2x to both sides.
x^{2}-3x+6=-x^{2}-6
Combine -5x and 2x to get -3x.
x^{2}-3x+6+x^{2}=-6
Add x^{2} to both sides.
2x^{2}-3x+6=-6
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-3x+6+6=0
Add 6 to both sides.
2x^{2}-3x+12=0
Add 6 and 6 to get 12.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\times 12}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\times 12}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\times 12}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{9-96}}{2\times 2}
Multiply -8 times 12.
x=\frac{-\left(-3\right)±\sqrt{-87}}{2\times 2}
Add 9 to -96.
x=\frac{-\left(-3\right)±\sqrt{87}i}{2\times 2}
Take the square root of -87.
x=\frac{3±\sqrt{87}i}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±\sqrt{87}i}{4}
Multiply 2 times 2.
x=\frac{3+\sqrt{87}i}{4}
Now solve the equation x=\frac{3±\sqrt{87}i}{4} when ± is plus. Add 3 to i\sqrt{87}.
x=\frac{-\sqrt{87}i+3}{4}
Now solve the equation x=\frac{3±\sqrt{87}i}{4} when ± is minus. Subtract i\sqrt{87} from 3.
x=\frac{3+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i+3}{4}
The equation is now solved.
x^{2}-5x+6=\left(x+4\right)\left(2-x\right)-14
Use the distributive property to multiply x-3 by x-2 and combine like terms.
x^{2}-5x+6=-2x-x^{2}+8-14
Use the distributive property to multiply x+4 by 2-x and combine like terms.
x^{2}-5x+6=-2x-x^{2}-6
Subtract 14 from 8 to get -6.
x^{2}-5x+6+2x=-x^{2}-6
Add 2x to both sides.
x^{2}-3x+6=-x^{2}-6
Combine -5x and 2x to get -3x.
x^{2}-3x+6+x^{2}=-6
Add x^{2} to both sides.
2x^{2}-3x+6=-6
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-3x=-6-6
Subtract 6 from both sides.
2x^{2}-3x=-12
Subtract 6 from -6 to get -12.
\frac{2x^{2}-3x}{2}=-\frac{12}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=-\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x=-6
Divide -12 by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-6+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-6+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{87}{16}
Add -6 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{87}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{87}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{87}i}{4} x-\frac{3}{4}=-\frac{\sqrt{87}i}{4}
Simplify.
x=\frac{3+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i+3}{4}
Add \frac{3}{4} to both sides of the equation.