Solve for x
x=-\frac{25\left(y-200\right)}{120-y}
y\neq 120
Solve for y
y=-\frac{40\left(3x-125\right)}{25-x}
x\neq 25
Graph
Share
Copied to clipboard
120x-xy-3000+25y=2000
Use the distributive property to multiply x-25 by 120-y.
120x-xy+25y=2000+3000
Add 3000 to both sides.
120x-xy+25y=5000
Add 2000 and 3000 to get 5000.
120x-xy=5000-25y
Subtract 25y from both sides.
\left(120-y\right)x=5000-25y
Combine all terms containing x.
\frac{\left(120-y\right)x}{120-y}=\frac{5000-25y}{120-y}
Divide both sides by 120-y.
x=\frac{5000-25y}{120-y}
Dividing by 120-y undoes the multiplication by 120-y.
x=\frac{25\left(200-y\right)}{120-y}
Divide 5000-25y by 120-y.
120x-xy-3000+25y=2000
Use the distributive property to multiply x-25 by 120-y.
-xy-3000+25y=2000-120x
Subtract 120x from both sides.
-xy+25y=2000-120x+3000
Add 3000 to both sides.
-xy+25y=5000-120x
Add 2000 and 3000 to get 5000.
\left(-x+25\right)y=5000-120x
Combine all terms containing y.
\left(25-x\right)y=5000-120x
The equation is in standard form.
\frac{\left(25-x\right)y}{25-x}=\frac{5000-120x}{25-x}
Divide both sides by -x+25.
y=\frac{5000-120x}{25-x}
Dividing by -x+25 undoes the multiplication by -x+25.
y=\frac{40\left(125-3x\right)}{25-x}
Divide 5000-120x by -x+25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}