Solve for x (complex solution)
x=\sqrt{15}-1\approx 2.872983346
x=-\left(\sqrt{15}+1\right)\approx -4.872983346
Solve for x
x=\sqrt{15}-1\approx 2.872983346
x=-\sqrt{15}-1\approx -4.872983346
Graph
Share
Copied to clipboard
x^{2}+2x-8=6
Use the distributive property to multiply x-2 by x+4 and combine like terms.
x^{2}+2x-8-6=0
Subtract 6 from both sides.
x^{2}+2x-14=0
Subtract 6 from -8 to get -14.
x=\frac{-2±\sqrt{2^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-14\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+56}}{2}
Multiply -4 times -14.
x=\frac{-2±\sqrt{60}}{2}
Add 4 to 56.
x=\frac{-2±2\sqrt{15}}{2}
Take the square root of 60.
x=\frac{2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is plus. Add -2 to 2\sqrt{15}.
x=\sqrt{15}-1
Divide -2+2\sqrt{15} by 2.
x=\frac{-2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -2.
x=-\sqrt{15}-1
Divide -2-2\sqrt{15} by 2.
x=\sqrt{15}-1 x=-\sqrt{15}-1
The equation is now solved.
x^{2}+2x-8=6
Use the distributive property to multiply x-2 by x+4 and combine like terms.
x^{2}+2x=6+8
Add 8 to both sides.
x^{2}+2x=14
Add 6 and 8 to get 14.
x^{2}+2x+1^{2}=14+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=14+1
Square 1.
x^{2}+2x+1=15
Add 14 to 1.
\left(x+1\right)^{2}=15
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+1=\sqrt{15} x+1=-\sqrt{15}
Simplify.
x=\sqrt{15}-1 x=-\sqrt{15}-1
Subtract 1 from both sides of the equation.
x^{2}+2x-8=6
Use the distributive property to multiply x-2 by x+4 and combine like terms.
x^{2}+2x-8-6=0
Subtract 6 from both sides.
x^{2}+2x-14=0
Subtract 6 from -8 to get -14.
x=\frac{-2±\sqrt{2^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-14\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+56}}{2}
Multiply -4 times -14.
x=\frac{-2±\sqrt{60}}{2}
Add 4 to 56.
x=\frac{-2±2\sqrt{15}}{2}
Take the square root of 60.
x=\frac{2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is plus. Add -2 to 2\sqrt{15}.
x=\sqrt{15}-1
Divide -2+2\sqrt{15} by 2.
x=\frac{-2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -2.
x=-\sqrt{15}-1
Divide -2-2\sqrt{15} by 2.
x=\sqrt{15}-1 x=-\sqrt{15}-1
The equation is now solved.
x^{2}+2x-8=6
Use the distributive property to multiply x-2 by x+4 and combine like terms.
x^{2}+2x=6+8
Add 8 to both sides.
x^{2}+2x=14
Add 6 and 8 to get 14.
x^{2}+2x+1^{2}=14+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=14+1
Square 1.
x^{2}+2x+1=15
Add 14 to 1.
\left(x+1\right)^{2}=15
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+1=\sqrt{15} x+1=-\sqrt{15}
Simplify.
x=\sqrt{15}-1 x=-\sqrt{15}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}