Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4=16
Consider \left(x-2\right)\left(x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{2}=16+4
Add 4 to both sides.
x^{2}=20
Add 16 and 4 to get 20.
x=2\sqrt{5} x=-2\sqrt{5}
Take the square root of both sides of the equation.
x^{2}-4=16
Consider \left(x-2\right)\left(x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{2}-4-16=0
Subtract 16 from both sides.
x^{2}-20=0
Subtract 16 from -4 to get -20.
x=\frac{0±\sqrt{0^{2}-4\left(-20\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-20\right)}}{2}
Square 0.
x=\frac{0±\sqrt{80}}{2}
Multiply -4 times -20.
x=\frac{0±4\sqrt{5}}{2}
Take the square root of 80.
x=2\sqrt{5}
Now solve the equation x=\frac{0±4\sqrt{5}}{2} when ± is plus.
x=-2\sqrt{5}
Now solve the equation x=\frac{0±4\sqrt{5}}{2} when ± is minus.
x=2\sqrt{5} x=-2\sqrt{5}
The equation is now solved.