Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x-3x^{2}-2=6
Use the distributive property to multiply x-2 by 1-3x and combine like terms.
7x-3x^{2}-2-6=0
Subtract 6 from both sides.
7x-3x^{2}-8=0
Subtract 6 from -2 to get -8.
-3x^{2}+7x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 7 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
Square 7.
x=\frac{-7±\sqrt{49+12\left(-8\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-7±\sqrt{49-96}}{2\left(-3\right)}
Multiply 12 times -8.
x=\frac{-7±\sqrt{-47}}{2\left(-3\right)}
Add 49 to -96.
x=\frac{-7±\sqrt{47}i}{2\left(-3\right)}
Take the square root of -47.
x=\frac{-7±\sqrt{47}i}{-6}
Multiply 2 times -3.
x=\frac{-7+\sqrt{47}i}{-6}
Now solve the equation x=\frac{-7±\sqrt{47}i}{-6} when ± is plus. Add -7 to i\sqrt{47}.
x=\frac{-\sqrt{47}i+7}{6}
Divide -7+i\sqrt{47} by -6.
x=\frac{-\sqrt{47}i-7}{-6}
Now solve the equation x=\frac{-7±\sqrt{47}i}{-6} when ± is minus. Subtract i\sqrt{47} from -7.
x=\frac{7+\sqrt{47}i}{6}
Divide -7-i\sqrt{47} by -6.
x=\frac{-\sqrt{47}i+7}{6} x=\frac{7+\sqrt{47}i}{6}
The equation is now solved.
7x-3x^{2}-2=6
Use the distributive property to multiply x-2 by 1-3x and combine like terms.
7x-3x^{2}=6+2
Add 2 to both sides.
7x-3x^{2}=8
Add 6 and 2 to get 8.
-3x^{2}+7x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+7x}{-3}=\frac{8}{-3}
Divide both sides by -3.
x^{2}+\frac{7}{-3}x=\frac{8}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{7}{3}x=\frac{8}{-3}
Divide 7 by -3.
x^{2}-\frac{7}{3}x=-\frac{8}{3}
Divide 8 by -3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{8}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{8}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{47}{36}
Add -\frac{8}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{6}\right)^{2}=-\frac{47}{36}
Factor x^{2}-\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
Take the square root of both sides of the equation.
x-\frac{7}{6}=\frac{\sqrt{47}i}{6} x-\frac{7}{6}=-\frac{\sqrt{47}i}{6}
Simplify.
x=\frac{7+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i+7}{6}
Add \frac{7}{6} to both sides of the equation.