Solve for x
x=20
x=24
Graph
Share
Copied to clipboard
88x-2x^{2}-870=90
Use the distributive property to multiply x-15 by 58-2x and combine like terms.
88x-2x^{2}-870-90=0
Subtract 90 from both sides.
88x-2x^{2}-960=0
Subtract 90 from -870 to get -960.
-2x^{2}+88x-960=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-88±\sqrt{88^{2}-4\left(-2\right)\left(-960\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 88 for b, and -960 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-88±\sqrt{7744-4\left(-2\right)\left(-960\right)}}{2\left(-2\right)}
Square 88.
x=\frac{-88±\sqrt{7744+8\left(-960\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-88±\sqrt{7744-7680}}{2\left(-2\right)}
Multiply 8 times -960.
x=\frac{-88±\sqrt{64}}{2\left(-2\right)}
Add 7744 to -7680.
x=\frac{-88±8}{2\left(-2\right)}
Take the square root of 64.
x=\frac{-88±8}{-4}
Multiply 2 times -2.
x=-\frac{80}{-4}
Now solve the equation x=\frac{-88±8}{-4} when ± is plus. Add -88 to 8.
x=20
Divide -80 by -4.
x=-\frac{96}{-4}
Now solve the equation x=\frac{-88±8}{-4} when ± is minus. Subtract 8 from -88.
x=24
Divide -96 by -4.
x=20 x=24
The equation is now solved.
88x-2x^{2}-870=90
Use the distributive property to multiply x-15 by 58-2x and combine like terms.
88x-2x^{2}=90+870
Add 870 to both sides.
88x-2x^{2}=960
Add 90 and 870 to get 960.
-2x^{2}+88x=960
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+88x}{-2}=\frac{960}{-2}
Divide both sides by -2.
x^{2}+\frac{88}{-2}x=\frac{960}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-44x=\frac{960}{-2}
Divide 88 by -2.
x^{2}-44x=-480
Divide 960 by -2.
x^{2}-44x+\left(-22\right)^{2}=-480+\left(-22\right)^{2}
Divide -44, the coefficient of the x term, by 2 to get -22. Then add the square of -22 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-44x+484=-480+484
Square -22.
x^{2}-44x+484=4
Add -480 to 484.
\left(x-22\right)^{2}=4
Factor x^{2}-44x+484. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-22\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-22=2 x-22=-2
Simplify.
x=24 x=20
Add 22 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}