Solve for x
x=\sqrt{390}+12\approx 31.748417658
x=12-\sqrt{390}\approx -7.748417658
Graph
Share
Copied to clipboard
\left(x-12\right)^{2}-6=384
Multiply x-12 and x-12 to get \left(x-12\right)^{2}.
x^{2}-24x+144-6=384
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
x^{2}-24x+138=384
Subtract 6 from 144 to get 138.
x^{2}-24x+138-384=0
Subtract 384 from both sides.
x^{2}-24x-246=0
Subtract 384 from 138 to get -246.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-246\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -24 for b, and -246 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-246\right)}}{2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576+984}}{2}
Multiply -4 times -246.
x=\frac{-\left(-24\right)±\sqrt{1560}}{2}
Add 576 to 984.
x=\frac{-\left(-24\right)±2\sqrt{390}}{2}
Take the square root of 1560.
x=\frac{24±2\sqrt{390}}{2}
The opposite of -24 is 24.
x=\frac{2\sqrt{390}+24}{2}
Now solve the equation x=\frac{24±2\sqrt{390}}{2} when ± is plus. Add 24 to 2\sqrt{390}.
x=\sqrt{390}+12
Divide 24+2\sqrt{390} by 2.
x=\frac{24-2\sqrt{390}}{2}
Now solve the equation x=\frac{24±2\sqrt{390}}{2} when ± is minus. Subtract 2\sqrt{390} from 24.
x=12-\sqrt{390}
Divide 24-2\sqrt{390} by 2.
x=\sqrt{390}+12 x=12-\sqrt{390}
The equation is now solved.
\left(x-12\right)^{2}-6=384
Multiply x-12 and x-12 to get \left(x-12\right)^{2}.
x^{2}-24x+144-6=384
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
x^{2}-24x+138=384
Subtract 6 from 144 to get 138.
x^{2}-24x=384-138
Subtract 138 from both sides.
x^{2}-24x=246
Subtract 138 from 384 to get 246.
x^{2}-24x+\left(-12\right)^{2}=246+\left(-12\right)^{2}
Divide -24, the coefficient of the x term, by 2 to get -12. Then add the square of -12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-24x+144=246+144
Square -12.
x^{2}-24x+144=390
Add 246 to 144.
\left(x-12\right)^{2}=390
Factor x^{2}-24x+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-12\right)^{2}}=\sqrt{390}
Take the square root of both sides of the equation.
x-12=\sqrt{390} x-12=-\sqrt{390}
Simplify.
x=\sqrt{390}+12 x=12-\sqrt{390}
Add 12 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}