Solve for x
\left\{\begin{matrix}\\x=1\text{; }x=z\text{, }&\text{unconditionally}\\x\in (-\infty,z]\cup [1,\infty)\text{, }&z<1\\x\in (-\infty,1]\cup [z,\infty)\text{, }&z\geq 1\end{matrix}\right.
Solve for z
\left\{\begin{matrix}\\z=x\text{, }&\text{unconditionally}\\z\geq x\text{, }&x\leq 1\\z\leq x\text{, }&x\geq 1\\z\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Graph
Share
Copied to clipboard
x-1\leq 0 x-z\leq 0
For the product to be ≥0, x-1 and x-z have to be both ≤0 or both ≥0. Consider the case when x-1 and x-z are both ≤0.
\left\{\begin{matrix}x\leq z\text{, }&z\leq 1\\x\leq 1\text{, }&z>1\end{matrix}\right.
The solution satisfying both inequalities is \left\{\begin{matrix}x\leq z\text{, }&z\leq 1\\x\leq 1\text{, }&z>1\end{matrix}\right..
x-z\geq 0 x-1\geq 0
Consider the case when x-1 and x-z are both ≥0.
\left\{\begin{matrix}x\geq 1\text{, }&z\leq 1\\x\geq z\text{, }&z>1\end{matrix}\right.
The solution satisfying both inequalities is \left\{\begin{matrix}x\geq 1\text{, }&z\leq 1\\x\geq z\text{, }&z>1\end{matrix}\right..
\left\{\begin{matrix}x\leq z\text{, }&z\leq 1\\x\leq 1\text{, }&z>1\\x\geq z\text{, }&z\geq 1\\x\geq 1\text{, }&z<1\end{matrix}\right.
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}