Evaluate
x^{2}+x-\frac{1}{4}
Factor
\left(x-\frac{-\sqrt{2}-1}{2}\right)\left(x-\frac{\sqrt{2}-1}{2}\right)
Graph
Quiz
Algebra
5 problems similar to:
(x- \frac{ - \sqrt{ 2 } -1 }{ 2 } )(x- \frac{ \sqrt{ 2 } -1 }{ 2 } )
Share
Copied to clipboard
\left(\frac{2x}{2}-\frac{-\sqrt{2}-1}{2}\right)\left(x-\frac{\sqrt{2}-1}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{2x-\left(-\sqrt{2}-1\right)}{2}\left(x-\frac{\sqrt{2}-1}{2}\right)
Since \frac{2x}{2} and \frac{-\sqrt{2}-1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x+\sqrt{2}+1}{2}\left(x-\frac{\sqrt{2}-1}{2}\right)
Do the multiplications in 2x-\left(-\sqrt{2}-1\right).
\frac{2x+\sqrt{2}+1}{2}\left(\frac{2x}{2}-\frac{\sqrt{2}-1}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{2x+\sqrt{2}+1}{2}\times \frac{2x-\left(\sqrt{2}-1\right)}{2}
Since \frac{2x}{2} and \frac{\sqrt{2}-1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x+\sqrt{2}+1}{2}\times \frac{2x-\sqrt{2}+1}{2}
Do the multiplications in 2x-\left(\sqrt{2}-1\right).
\frac{\left(2x+\sqrt{2}+1\right)\left(2x-\sqrt{2}+1\right)}{2\times 2}
Multiply \frac{2x+\sqrt{2}+1}{2} times \frac{2x-\sqrt{2}+1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+\sqrt{2}+1\right)\left(2x-\sqrt{2}+1\right)}{4}
Multiply 2 and 2 to get 4.
\frac{4x^{2}-2\sqrt{2}x+2x+2\sqrt{2}x-\left(\sqrt{2}\right)^{2}+\sqrt{2}+2x-\sqrt{2}+1}{4}
Apply the distributive property by multiplying each term of 2x+\sqrt{2}+1 by each term of 2x-\sqrt{2}+1.
\frac{4x^{2}+2x-\left(\sqrt{2}\right)^{2}+\sqrt{2}+2x-\sqrt{2}+1}{4}
Combine -2\sqrt{2}x and 2\sqrt{2}x to get 0.
\frac{4x^{2}+2x-2+\sqrt{2}+2x-\sqrt{2}+1}{4}
The square of \sqrt{2} is 2.
\frac{4x^{2}+4x-2+\sqrt{2}-\sqrt{2}+1}{4}
Combine 2x and 2x to get 4x.
\frac{4x^{2}+4x-2+1}{4}
Combine \sqrt{2} and -\sqrt{2} to get 0.
\frac{4x^{2}+4x-1}{4}
Add -2 and 1 to get -1.
-\frac{1}{4}+x+x^{2}
Divide each term of 4x^{2}+4x-1 by 4 to get -\frac{1}{4}+x+x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}