Solve for x
x=\frac{\sqrt{21}}{3}+3\approx 4.527525232
x=-\frac{\sqrt{21}}{3}+3\approx 1.472474768
Graph
Share
Copied to clipboard
x+3x^{2}=19x-20
Add 3x^{2} to both sides.
x+3x^{2}-19x=-20
Subtract 19x from both sides.
-18x+3x^{2}=-20
Combine x and -19x to get -18x.
-18x+3x^{2}+20=0
Add 20 to both sides.
3x^{2}-18x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 20}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -18 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 20}}{2\times 3}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-12\times 20}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-18\right)±\sqrt{324-240}}{2\times 3}
Multiply -12 times 20.
x=\frac{-\left(-18\right)±\sqrt{84}}{2\times 3}
Add 324 to -240.
x=\frac{-\left(-18\right)±2\sqrt{21}}{2\times 3}
Take the square root of 84.
x=\frac{18±2\sqrt{21}}{2\times 3}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{21}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{21}+18}{6}
Now solve the equation x=\frac{18±2\sqrt{21}}{6} when ± is plus. Add 18 to 2\sqrt{21}.
x=\frac{\sqrt{21}}{3}+3
Divide 18+2\sqrt{21} by 6.
x=\frac{18-2\sqrt{21}}{6}
Now solve the equation x=\frac{18±2\sqrt{21}}{6} when ± is minus. Subtract 2\sqrt{21} from 18.
x=-\frac{\sqrt{21}}{3}+3
Divide 18-2\sqrt{21} by 6.
x=\frac{\sqrt{21}}{3}+3 x=-\frac{\sqrt{21}}{3}+3
The equation is now solved.
x+3x^{2}=19x-20
Add 3x^{2} to both sides.
x+3x^{2}-19x=-20
Subtract 19x from both sides.
-18x+3x^{2}=-20
Combine x and -19x to get -18x.
3x^{2}-18x=-20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-18x}{3}=-\frac{20}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{18}{3}\right)x=-\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-6x=-\frac{20}{3}
Divide -18 by 3.
x^{2}-6x+\left(-3\right)^{2}=-\frac{20}{3}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{20}{3}+9
Square -3.
x^{2}-6x+9=\frac{7}{3}
Add -\frac{20}{3} to 9.
\left(x-3\right)^{2}=\frac{7}{3}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{7}{3}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{21}}{3} x-3=-\frac{\sqrt{21}}{3}
Simplify.
x=\frac{\sqrt{21}}{3}+3 x=-\frac{\sqrt{21}}{3}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}