Solve for x
x=\frac{6\sqrt{187369}}{13}-6\approx 193.782189088
x=-\frac{6\sqrt{187369}}{13}-6\approx -205.782189088
Graph
Share
Copied to clipboard
\left(1.25x^{2}+15x-50\times 40\right)\times 30+x\left(1.25x+15\right)\times 100=6420000
Use the distributive property to multiply x by 1.25x+15.
\left(1.25x^{2}+15x-2000\right)\times 30+x\left(1.25x+15\right)\times 100=6420000
Multiply 50 and 40 to get 2000.
37.5x^{2}+450x-60000+x\left(1.25x+15\right)\times 100=6420000
Use the distributive property to multiply 1.25x^{2}+15x-2000 by 30.
37.5x^{2}+450x-60000+\left(1.25x^{2}+15x\right)\times 100=6420000
Use the distributive property to multiply x by 1.25x+15.
37.5x^{2}+450x-60000+125x^{2}+1500x=6420000
Use the distributive property to multiply 1.25x^{2}+15x by 100.
162.5x^{2}+450x-60000+1500x=6420000
Combine 37.5x^{2} and 125x^{2} to get 162.5x^{2}.
162.5x^{2}+1950x-60000=6420000
Combine 450x and 1500x to get 1950x.
162.5x^{2}+1950x-60000-6420000=0
Subtract 6420000 from both sides.
162.5x^{2}+1950x-6480000=0
Subtract 6420000 from -60000 to get -6480000.
x=\frac{-1950±\sqrt{1950^{2}-4\times 162.5\left(-6480000\right)}}{2\times 162.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 162.5 for a, 1950 for b, and -6480000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1950±\sqrt{3802500-4\times 162.5\left(-6480000\right)}}{2\times 162.5}
Square 1950.
x=\frac{-1950±\sqrt{3802500-650\left(-6480000\right)}}{2\times 162.5}
Multiply -4 times 162.5.
x=\frac{-1950±\sqrt{3802500+4212000000}}{2\times 162.5}
Multiply -650 times -6480000.
x=\frac{-1950±\sqrt{4215802500}}{2\times 162.5}
Add 3802500 to 4212000000.
x=\frac{-1950±150\sqrt{187369}}{2\times 162.5}
Take the square root of 4215802500.
x=\frac{-1950±150\sqrt{187369}}{325}
Multiply 2 times 162.5.
x=\frac{150\sqrt{187369}-1950}{325}
Now solve the equation x=\frac{-1950±150\sqrt{187369}}{325} when ± is plus. Add -1950 to 150\sqrt{187369}.
x=\frac{6\sqrt{187369}}{13}-6
Divide -1950+150\sqrt{187369} by 325.
x=\frac{-150\sqrt{187369}-1950}{325}
Now solve the equation x=\frac{-1950±150\sqrt{187369}}{325} when ± is minus. Subtract 150\sqrt{187369} from -1950.
x=-\frac{6\sqrt{187369}}{13}-6
Divide -1950-150\sqrt{187369} by 325.
x=\frac{6\sqrt{187369}}{13}-6 x=-\frac{6\sqrt{187369}}{13}-6
The equation is now solved.
\left(1.25x^{2}+15x-50\times 40\right)\times 30+x\left(1.25x+15\right)\times 100=6420000
Use the distributive property to multiply x by 1.25x+15.
\left(1.25x^{2}+15x-2000\right)\times 30+x\left(1.25x+15\right)\times 100=6420000
Multiply 50 and 40 to get 2000.
37.5x^{2}+450x-60000+x\left(1.25x+15\right)\times 100=6420000
Use the distributive property to multiply 1.25x^{2}+15x-2000 by 30.
37.5x^{2}+450x-60000+\left(1.25x^{2}+15x\right)\times 100=6420000
Use the distributive property to multiply x by 1.25x+15.
37.5x^{2}+450x-60000+125x^{2}+1500x=6420000
Use the distributive property to multiply 1.25x^{2}+15x by 100.
162.5x^{2}+450x-60000+1500x=6420000
Combine 37.5x^{2} and 125x^{2} to get 162.5x^{2}.
162.5x^{2}+1950x-60000=6420000
Combine 450x and 1500x to get 1950x.
162.5x^{2}+1950x=6420000+60000
Add 60000 to both sides.
162.5x^{2}+1950x=6480000
Add 6420000 and 60000 to get 6480000.
\frac{162.5x^{2}+1950x}{162.5}=\frac{6480000}{162.5}
Divide both sides of the equation by 162.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1950}{162.5}x=\frac{6480000}{162.5}
Dividing by 162.5 undoes the multiplication by 162.5.
x^{2}+12x=\frac{6480000}{162.5}
Divide 1950 by 162.5 by multiplying 1950 by the reciprocal of 162.5.
x^{2}+12x=\frac{518400}{13}
Divide 6480000 by 162.5 by multiplying 6480000 by the reciprocal of 162.5.
x^{2}+12x+6^{2}=\frac{518400}{13}+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=\frac{518400}{13}+36
Square 6.
x^{2}+12x+36=\frac{518868}{13}
Add \frac{518400}{13} to 36.
\left(x+6\right)^{2}=\frac{518868}{13}
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{\frac{518868}{13}}
Take the square root of both sides of the equation.
x+6=\frac{6\sqrt{187369}}{13} x+6=-\frac{6\sqrt{187369}}{13}
Simplify.
x=\frac{6\sqrt{187369}}{13}-6 x=-\frac{6\sqrt{187369}}{13}-6
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}