Solve for y (complex solution)
\left\{\begin{matrix}\\y=2x\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=2x\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
x=\frac{y}{2}
x=0
Graph
Share
Copied to clipboard
4x^{2}+2xy-2y^{2}=\left(-\left(x-y\right)\right)\left(4x-2y\right)
Use the distributive property to multiply x+y by 4x-2y and combine like terms.
4x^{2}+2xy-2y^{2}=\left(-x+y\right)\left(4x-2y\right)
To find the opposite of x-y, find the opposite of each term.
4x^{2}+2xy-2y^{2}=-4x^{2}+6xy-2y^{2}
Use the distributive property to multiply -x+y by 4x-2y and combine like terms.
4x^{2}+2xy-2y^{2}-6xy=-4x^{2}-2y^{2}
Subtract 6xy from both sides.
4x^{2}-4xy-2y^{2}=-4x^{2}-2y^{2}
Combine 2xy and -6xy to get -4xy.
4x^{2}-4xy-2y^{2}+2y^{2}=-4x^{2}
Add 2y^{2} to both sides.
4x^{2}-4xy=-4x^{2}
Combine -2y^{2} and 2y^{2} to get 0.
-4xy=-4x^{2}-4x^{2}
Subtract 4x^{2} from both sides.
-4xy=-8x^{2}
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
\left(-4x\right)y=-8x^{2}
The equation is in standard form.
\frac{\left(-4x\right)y}{-4x}=-\frac{8x^{2}}{-4x}
Divide both sides by -4x.
y=-\frac{8x^{2}}{-4x}
Dividing by -4x undoes the multiplication by -4x.
y=2x
Divide -8x^{2} by -4x.
4x^{2}+2xy-2y^{2}=\left(-\left(x-y\right)\right)\left(4x-2y\right)
Use the distributive property to multiply x+y by 4x-2y and combine like terms.
4x^{2}+2xy-2y^{2}=\left(-x+y\right)\left(4x-2y\right)
To find the opposite of x-y, find the opposite of each term.
4x^{2}+2xy-2y^{2}=-4x^{2}+6xy-2y^{2}
Use the distributive property to multiply -x+y by 4x-2y and combine like terms.
4x^{2}+2xy-2y^{2}-6xy=-4x^{2}-2y^{2}
Subtract 6xy from both sides.
4x^{2}-4xy-2y^{2}=-4x^{2}-2y^{2}
Combine 2xy and -6xy to get -4xy.
4x^{2}-4xy-2y^{2}+2y^{2}=-4x^{2}
Add 2y^{2} to both sides.
4x^{2}-4xy=-4x^{2}
Combine -2y^{2} and 2y^{2} to get 0.
-4xy=-4x^{2}-4x^{2}
Subtract 4x^{2} from both sides.
-4xy=-8x^{2}
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
\left(-4x\right)y=-8x^{2}
The equation is in standard form.
\frac{\left(-4x\right)y}{-4x}=-\frac{8x^{2}}{-4x}
Divide both sides by -4x.
y=-\frac{8x^{2}}{-4x}
Dividing by -4x undoes the multiplication by -4x.
y=2x
Divide -8x^{2} by -4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}