Solve for x
x=-12
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Share
Copied to clipboard
2x^{2}+17x-30=54
Use the distributive property to multiply x+10 by 2x-3 and combine like terms.
2x^{2}+17x-30-54=0
Subtract 54 from both sides.
2x^{2}+17x-84=0
Subtract 54 from -30 to get -84.
x=\frac{-17±\sqrt{17^{2}-4\times 2\left(-84\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 17 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 2\left(-84\right)}}{2\times 2}
Square 17.
x=\frac{-17±\sqrt{289-8\left(-84\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-17±\sqrt{289+672}}{2\times 2}
Multiply -8 times -84.
x=\frac{-17±\sqrt{961}}{2\times 2}
Add 289 to 672.
x=\frac{-17±31}{2\times 2}
Take the square root of 961.
x=\frac{-17±31}{4}
Multiply 2 times 2.
x=\frac{14}{4}
Now solve the equation x=\frac{-17±31}{4} when ± is plus. Add -17 to 31.
x=\frac{7}{2}
Reduce the fraction \frac{14}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{48}{4}
Now solve the equation x=\frac{-17±31}{4} when ± is minus. Subtract 31 from -17.
x=-12
Divide -48 by 4.
x=\frac{7}{2} x=-12
The equation is now solved.
2x^{2}+17x-30=54
Use the distributive property to multiply x+10 by 2x-3 and combine like terms.
2x^{2}+17x=54+30
Add 30 to both sides.
2x^{2}+17x=84
Add 54 and 30 to get 84.
\frac{2x^{2}+17x}{2}=\frac{84}{2}
Divide both sides by 2.
x^{2}+\frac{17}{2}x=\frac{84}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{17}{2}x=42
Divide 84 by 2.
x^{2}+\frac{17}{2}x+\left(\frac{17}{4}\right)^{2}=42+\left(\frac{17}{4}\right)^{2}
Divide \frac{17}{2}, the coefficient of the x term, by 2 to get \frac{17}{4}. Then add the square of \frac{17}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{2}x+\frac{289}{16}=42+\frac{289}{16}
Square \frac{17}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{2}x+\frac{289}{16}=\frac{961}{16}
Add 42 to \frac{289}{16}.
\left(x+\frac{17}{4}\right)^{2}=\frac{961}{16}
Factor x^{2}+\frac{17}{2}x+\frac{289}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{4}\right)^{2}}=\sqrt{\frac{961}{16}}
Take the square root of both sides of the equation.
x+\frac{17}{4}=\frac{31}{4} x+\frac{17}{4}=-\frac{31}{4}
Simplify.
x=\frac{7}{2} x=-12
Subtract \frac{17}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}