Solve for x
x=\sqrt{7}+2\approx 4.645751311
x=2-\sqrt{7}\approx -0.645751311
Graph
Share
Copied to clipboard
x^{2}-x-2+5=2x\left(x-3\right)+x
Use the distributive property to multiply x+1 by x-2 and combine like terms.
x^{2}-x+3=2x\left(x-3\right)+x
Add -2 and 5 to get 3.
x^{2}-x+3=2x^{2}-6x+x
Use the distributive property to multiply 2x by x-3.
x^{2}-x+3=2x^{2}-5x
Combine -6x and x to get -5x.
x^{2}-x+3-2x^{2}=-5x
Subtract 2x^{2} from both sides.
-x^{2}-x+3=-5x
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x+3+5x=0
Add 5x to both sides.
-x^{2}+4x+3=0
Combine -x and 5x to get 4x.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-4±\sqrt{28}}{2\left(-1\right)}
Add 16 to 12.
x=\frac{-4±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{-4±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}-4}{-2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{-2} when ± is plus. Add -4 to 2\sqrt{7}.
x=2-\sqrt{7}
Divide -4+2\sqrt{7} by -2.
x=\frac{-2\sqrt{7}-4}{-2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from -4.
x=\sqrt{7}+2
Divide -4-2\sqrt{7} by -2.
x=2-\sqrt{7} x=\sqrt{7}+2
The equation is now solved.
x^{2}-x-2+5=2x\left(x-3\right)+x
Use the distributive property to multiply x+1 by x-2 and combine like terms.
x^{2}-x+3=2x\left(x-3\right)+x
Add -2 and 5 to get 3.
x^{2}-x+3=2x^{2}-6x+x
Use the distributive property to multiply 2x by x-3.
x^{2}-x+3=2x^{2}-5x
Combine -6x and x to get -5x.
x^{2}-x+3-2x^{2}=-5x
Subtract 2x^{2} from both sides.
-x^{2}-x+3=-5x
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x+3+5x=0
Add 5x to both sides.
-x^{2}+4x+3=0
Combine -x and 5x to get 4x.
-x^{2}+4x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}+4x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=-\frac{3}{-1}
Divide 4 by -1.
x^{2}-4x=3
Divide -3 by -1.
x^{2}-4x+\left(-2\right)^{2}=3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=3+4
Square -2.
x^{2}-4x+4=7
Add 3 to 4.
\left(x-2\right)^{2}=7
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-2=\sqrt{7} x-2=-\sqrt{7}
Simplify.
x=\sqrt{7}+2 x=2-\sqrt{7}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}