Solve for x
x=8
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
x^{2}+3x+2=\left(2x-1\right)\left(2x-10\right)
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{2}+3x+2=4x^{2}-22x+10
Use the distributive property to multiply 2x-1 by 2x-10 and combine like terms.
x^{2}+3x+2-4x^{2}=-22x+10
Subtract 4x^{2} from both sides.
-3x^{2}+3x+2=-22x+10
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+3x+2+22x=10
Add 22x to both sides.
-3x^{2}+25x+2=10
Combine 3x and 22x to get 25x.
-3x^{2}+25x+2-10=0
Subtract 10 from both sides.
-3x^{2}+25x-8=0
Subtract 10 from 2 to get -8.
x=\frac{-25±\sqrt{25^{2}-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 25 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
Square 25.
x=\frac{-25±\sqrt{625+12\left(-8\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-25±\sqrt{625-96}}{2\left(-3\right)}
Multiply 12 times -8.
x=\frac{-25±\sqrt{529}}{2\left(-3\right)}
Add 625 to -96.
x=\frac{-25±23}{2\left(-3\right)}
Take the square root of 529.
x=\frac{-25±23}{-6}
Multiply 2 times -3.
x=-\frac{2}{-6}
Now solve the equation x=\frac{-25±23}{-6} when ± is plus. Add -25 to 23.
x=\frac{1}{3}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{48}{-6}
Now solve the equation x=\frac{-25±23}{-6} when ± is minus. Subtract 23 from -25.
x=8
Divide -48 by -6.
x=\frac{1}{3} x=8
The equation is now solved.
x^{2}+3x+2=\left(2x-1\right)\left(2x-10\right)
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{2}+3x+2=4x^{2}-22x+10
Use the distributive property to multiply 2x-1 by 2x-10 and combine like terms.
x^{2}+3x+2-4x^{2}=-22x+10
Subtract 4x^{2} from both sides.
-3x^{2}+3x+2=-22x+10
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+3x+2+22x=10
Add 22x to both sides.
-3x^{2}+25x+2=10
Combine 3x and 22x to get 25x.
-3x^{2}+25x=10-2
Subtract 2 from both sides.
-3x^{2}+25x=8
Subtract 2 from 10 to get 8.
\frac{-3x^{2}+25x}{-3}=\frac{8}{-3}
Divide both sides by -3.
x^{2}+\frac{25}{-3}x=\frac{8}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{25}{3}x=\frac{8}{-3}
Divide 25 by -3.
x^{2}-\frac{25}{3}x=-\frac{8}{3}
Divide 8 by -3.
x^{2}-\frac{25}{3}x+\left(-\frac{25}{6}\right)^{2}=-\frac{8}{3}+\left(-\frac{25}{6}\right)^{2}
Divide -\frac{25}{3}, the coefficient of the x term, by 2 to get -\frac{25}{6}. Then add the square of -\frac{25}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{3}x+\frac{625}{36}=-\frac{8}{3}+\frac{625}{36}
Square -\frac{25}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{3}x+\frac{625}{36}=\frac{529}{36}
Add -\frac{8}{3} to \frac{625}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{6}\right)^{2}=\frac{529}{36}
Factor x^{2}-\frac{25}{3}x+\frac{625}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{6}\right)^{2}}=\sqrt{\frac{529}{36}}
Take the square root of both sides of the equation.
x-\frac{25}{6}=\frac{23}{6} x-\frac{25}{6}=-\frac{23}{6}
Simplify.
x=8 x=\frac{1}{3}
Add \frac{25}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}