Solve for y
y=-\left(x-2\right)\left(x+1\right)^{2}
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}\left(x-2\right)=-y
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
\left(x^{2}+2x+1\right)\left(x-2\right)=-y
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{3}-3x-2=-y
Use the distributive property to multiply x^{2}+2x+1 by x-2 and combine like terms.
-y=x^{3}-3x-2
Swap sides so that all variable terms are on the left hand side.
\frac{-y}{-1}=\frac{\left(x-2\right)\left(x+1\right)^{2}}{-1}
Divide both sides by -1.
y=\frac{\left(x-2\right)\left(x+1\right)^{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
y=-\left(x-2\right)\left(x+1\right)^{2}
Divide \left(-2+x\right)\left(1+x\right)^{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}