Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}=\left(x+2\right)\left(x-2\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
x^{2}+2x+1=\left(x+2\right)\left(x-2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=x^{2}-4
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{2}+2x+1-x^{2}=-4
Subtract x^{2} from both sides.
2x+1=-4
Combine x^{2} and -x^{2} to get 0.
2x=-4-1
Subtract 1 from both sides.
2x=-5
Subtract 1 from -4 to get -5.
x=\frac{-5}{2}
Divide both sides by 2.
x=-\frac{5}{2}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}