Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x+2=90
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{2}+3x+2-90=0
Subtract 90 from both sides.
x^{2}+3x-88=0
Subtract 90 from 2 to get -88.
x=\frac{-3±\sqrt{3^{2}-4\left(-88\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -88 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-88\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+352}}{2}
Multiply -4 times -88.
x=\frac{-3±\sqrt{361}}{2}
Add 9 to 352.
x=\frac{-3±19}{2}
Take the square root of 361.
x=\frac{16}{2}
Now solve the equation x=\frac{-3±19}{2} when ± is plus. Add -3 to 19.
x=8
Divide 16 by 2.
x=-\frac{22}{2}
Now solve the equation x=\frac{-3±19}{2} when ± is minus. Subtract 19 from -3.
x=-11
Divide -22 by 2.
x=8 x=-11
The equation is now solved.
x^{2}+3x+2=90
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{2}+3x=90-2
Subtract 2 from both sides.
x^{2}+3x=88
Subtract 2 from 90 to get 88.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=88+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=88+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{361}{4}
Add 88 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{361}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{19}{2} x+\frac{3}{2}=-\frac{19}{2}
Simplify.
x=8 x=-11
Subtract \frac{3}{2} from both sides of the equation.