Solve for x
x=-10
x=-\frac{2}{9}\approx -0.222222222
Graph
Share
Copied to clipboard
9x^{2}+92x+99=79
Use the distributive property to multiply 9x+11 by x+9 and combine like terms.
9x^{2}+92x+99-79=0
Subtract 79 from both sides.
9x^{2}+92x+20=0
Subtract 79 from 99 to get 20.
x=\frac{-92±\sqrt{92^{2}-4\times 9\times 20}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 92 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-92±\sqrt{8464-4\times 9\times 20}}{2\times 9}
Square 92.
x=\frac{-92±\sqrt{8464-36\times 20}}{2\times 9}
Multiply -4 times 9.
x=\frac{-92±\sqrt{8464-720}}{2\times 9}
Multiply -36 times 20.
x=\frac{-92±\sqrt{7744}}{2\times 9}
Add 8464 to -720.
x=\frac{-92±88}{2\times 9}
Take the square root of 7744.
x=\frac{-92±88}{18}
Multiply 2 times 9.
x=-\frac{4}{18}
Now solve the equation x=\frac{-92±88}{18} when ± is plus. Add -92 to 88.
x=-\frac{2}{9}
Reduce the fraction \frac{-4}{18} to lowest terms by extracting and canceling out 2.
x=-\frac{180}{18}
Now solve the equation x=\frac{-92±88}{18} when ± is minus. Subtract 88 from -92.
x=-10
Divide -180 by 18.
x=-\frac{2}{9} x=-10
The equation is now solved.
9x^{2}+92x+99=79
Use the distributive property to multiply 9x+11 by x+9 and combine like terms.
9x^{2}+92x=79-99
Subtract 99 from both sides.
9x^{2}+92x=-20
Subtract 99 from 79 to get -20.
\frac{9x^{2}+92x}{9}=-\frac{20}{9}
Divide both sides by 9.
x^{2}+\frac{92}{9}x=-\frac{20}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{92}{9}x+\left(\frac{46}{9}\right)^{2}=-\frac{20}{9}+\left(\frac{46}{9}\right)^{2}
Divide \frac{92}{9}, the coefficient of the x term, by 2 to get \frac{46}{9}. Then add the square of \frac{46}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{92}{9}x+\frac{2116}{81}=-\frac{20}{9}+\frac{2116}{81}
Square \frac{46}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{92}{9}x+\frac{2116}{81}=\frac{1936}{81}
Add -\frac{20}{9} to \frac{2116}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{46}{9}\right)^{2}=\frac{1936}{81}
Factor x^{2}+\frac{92}{9}x+\frac{2116}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{46}{9}\right)^{2}}=\sqrt{\frac{1936}{81}}
Take the square root of both sides of the equation.
x+\frac{46}{9}=\frac{44}{9} x+\frac{46}{9}=-\frac{44}{9}
Simplify.
x=-\frac{2}{9} x=-10
Subtract \frac{46}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}