Solve for x
x=\frac{1}{8}=0.125
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
96x^{2}-140x-75=-91
Use the distributive property to multiply 8x-15 by 12x+5 and combine like terms.
96x^{2}-140x-75+91=0
Add 91 to both sides.
96x^{2}-140x+16=0
Add -75 and 91 to get 16.
x=\frac{-\left(-140\right)±\sqrt{\left(-140\right)^{2}-4\times 96\times 16}}{2\times 96}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 96 for a, -140 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-140\right)±\sqrt{19600-4\times 96\times 16}}{2\times 96}
Square -140.
x=\frac{-\left(-140\right)±\sqrt{19600-384\times 16}}{2\times 96}
Multiply -4 times 96.
x=\frac{-\left(-140\right)±\sqrt{19600-6144}}{2\times 96}
Multiply -384 times 16.
x=\frac{-\left(-140\right)±\sqrt{13456}}{2\times 96}
Add 19600 to -6144.
x=\frac{-\left(-140\right)±116}{2\times 96}
Take the square root of 13456.
x=\frac{140±116}{2\times 96}
The opposite of -140 is 140.
x=\frac{140±116}{192}
Multiply 2 times 96.
x=\frac{256}{192}
Now solve the equation x=\frac{140±116}{192} when ± is plus. Add 140 to 116.
x=\frac{4}{3}
Reduce the fraction \frac{256}{192} to lowest terms by extracting and canceling out 64.
x=\frac{24}{192}
Now solve the equation x=\frac{140±116}{192} when ± is minus. Subtract 116 from 140.
x=\frac{1}{8}
Reduce the fraction \frac{24}{192} to lowest terms by extracting and canceling out 24.
x=\frac{4}{3} x=\frac{1}{8}
The equation is now solved.
96x^{2}-140x-75=-91
Use the distributive property to multiply 8x-15 by 12x+5 and combine like terms.
96x^{2}-140x=-91+75
Add 75 to both sides.
96x^{2}-140x=-16
Add -91 and 75 to get -16.
\frac{96x^{2}-140x}{96}=-\frac{16}{96}
Divide both sides by 96.
x^{2}+\left(-\frac{140}{96}\right)x=-\frac{16}{96}
Dividing by 96 undoes the multiplication by 96.
x^{2}-\frac{35}{24}x=-\frac{16}{96}
Reduce the fraction \frac{-140}{96} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{35}{24}x=-\frac{1}{6}
Reduce the fraction \frac{-16}{96} to lowest terms by extracting and canceling out 16.
x^{2}-\frac{35}{24}x+\left(-\frac{35}{48}\right)^{2}=-\frac{1}{6}+\left(-\frac{35}{48}\right)^{2}
Divide -\frac{35}{24}, the coefficient of the x term, by 2 to get -\frac{35}{48}. Then add the square of -\frac{35}{48} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=-\frac{1}{6}+\frac{1225}{2304}
Square -\frac{35}{48} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=\frac{841}{2304}
Add -\frac{1}{6} to \frac{1225}{2304} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{48}\right)^{2}=\frac{841}{2304}
Factor x^{2}-\frac{35}{24}x+\frac{1225}{2304}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{48}\right)^{2}}=\sqrt{\frac{841}{2304}}
Take the square root of both sides of the equation.
x-\frac{35}{48}=\frac{29}{48} x-\frac{35}{48}=-\frac{29}{48}
Simplify.
x=\frac{4}{3} x=\frac{1}{8}
Add \frac{35}{48} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}