Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(8224-x\right)\left(1+\frac{14}{25}\right)=x
Reduce the fraction \frac{56}{100} to lowest terms by extracting and canceling out 4.
\left(8224-x\right)\left(\frac{25}{25}+\frac{14}{25}\right)=x
Convert 1 to fraction \frac{25}{25}.
\left(8224-x\right)\times \frac{25+14}{25}=x
Since \frac{25}{25} and \frac{14}{25} have the same denominator, add them by adding their numerators.
\left(8224-x\right)\times \frac{39}{25}=x
Add 25 and 14 to get 39.
8224\times \frac{39}{25}-x\times \frac{39}{25}=x
Use the distributive property to multiply 8224-x by \frac{39}{25}.
\frac{8224\times 39}{25}-x\times \frac{39}{25}=x
Express 8224\times \frac{39}{25} as a single fraction.
\frac{320736}{25}-x\times \frac{39}{25}=x
Multiply 8224 and 39 to get 320736.
\frac{320736}{25}-\frac{39}{25}x=x
Multiply -1 and \frac{39}{25} to get -\frac{39}{25}.
\frac{320736}{25}-\frac{39}{25}x-x=0
Subtract x from both sides.
\frac{320736}{25}-\frac{64}{25}x=0
Combine -\frac{39}{25}x and -x to get -\frac{64}{25}x.
-\frac{64}{25}x=-\frac{320736}{25}
Subtract \frac{320736}{25} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{320736}{25}\left(-\frac{25}{64}\right)
Multiply both sides by -\frac{25}{64}, the reciprocal of -\frac{64}{25}.
x=\frac{-320736\left(-25\right)}{25\times 64}
Multiply -\frac{320736}{25} times -\frac{25}{64} by multiplying numerator times numerator and denominator times denominator.
x=\frac{8018400}{1600}
Do the multiplications in the fraction \frac{-320736\left(-25\right)}{25\times 64}.
x=\frac{10023}{2}
Reduce the fraction \frac{8018400}{1600} to lowest terms by extracting and canceling out 800.