Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(8224-x\right)\left(1+\frac{56}{1000}\right)=x
Expand \frac{5.6}{100} by multiplying both numerator and the denominator by 10.
\left(8224-x\right)\left(1+\frac{7}{125}\right)=x
Reduce the fraction \frac{56}{1000} to lowest terms by extracting and canceling out 8.
\left(8224-x\right)\left(\frac{125}{125}+\frac{7}{125}\right)=x
Convert 1 to fraction \frac{125}{125}.
\left(8224-x\right)\times \frac{125+7}{125}=x
Since \frac{125}{125} and \frac{7}{125} have the same denominator, add them by adding their numerators.
\left(8224-x\right)\times \frac{132}{125}=x
Add 125 and 7 to get 132.
8224\times \frac{132}{125}-x\times \frac{132}{125}=x
Use the distributive property to multiply 8224-x by \frac{132}{125}.
\frac{8224\times 132}{125}-x\times \frac{132}{125}=x
Express 8224\times \frac{132}{125} as a single fraction.
\frac{1085568}{125}-x\times \frac{132}{125}=x
Multiply 8224 and 132 to get 1085568.
\frac{1085568}{125}-\frac{132}{125}x=x
Multiply -1 and \frac{132}{125} to get -\frac{132}{125}.
\frac{1085568}{125}-\frac{132}{125}x-x=0
Subtract x from both sides.
\frac{1085568}{125}-\frac{257}{125}x=0
Combine -\frac{132}{125}x and -x to get -\frac{257}{125}x.
-\frac{257}{125}x=-\frac{1085568}{125}
Subtract \frac{1085568}{125} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{1085568}{125}\left(-\frac{125}{257}\right)
Multiply both sides by -\frac{125}{257}, the reciprocal of -\frac{257}{125}.
x=\frac{-1085568\left(-125\right)}{125\times 257}
Multiply -\frac{1085568}{125} times -\frac{125}{257} by multiplying numerator times numerator and denominator times denominator.
x=\frac{135696000}{32125}
Do the multiplications in the fraction \frac{-1085568\left(-125\right)}{125\times 257}.
x=4224
Divide 135696000 by 32125 to get 4224.