Evaluate
9\left(\sqrt{6}+1\right)\approx 31.045407685
Share
Copied to clipboard
\frac{7\sqrt{3}-2\times 2\sqrt{3}+3\sqrt{18}}{\sqrt{\frac{1}{3}}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{7\sqrt{3}-4\sqrt{3}+3\sqrt{18}}{\sqrt{\frac{1}{3}}}
Multiply -2 and 2 to get -4.
\frac{3\sqrt{3}+3\sqrt{18}}{\sqrt{\frac{1}{3}}}
Combine 7\sqrt{3} and -4\sqrt{3} to get 3\sqrt{3}.
\frac{3\sqrt{3}+3\times 3\sqrt{2}}{\sqrt{\frac{1}{3}}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{3}+9\sqrt{2}}{\sqrt{\frac{1}{3}}}
Multiply 3 and 3 to get 9.
\frac{3\sqrt{3}+9\sqrt{2}}{\frac{\sqrt{1}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{3\sqrt{3}+9\sqrt{2}}{\frac{1}{\sqrt{3}}}
Calculate the square root of 1 and get 1.
\frac{3\sqrt{3}+9\sqrt{2}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\sqrt{3}+9\sqrt{2}}{\frac{\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{\left(3\sqrt{3}+9\sqrt{2}\right)\times 3}{\sqrt{3}}
Divide 3\sqrt{3}+9\sqrt{2} by \frac{\sqrt{3}}{3} by multiplying 3\sqrt{3}+9\sqrt{2} by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{\left(3\sqrt{3}+9\sqrt{2}\right)\times 3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\left(3\sqrt{3}+9\sqrt{2}\right)\times 3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(3\sqrt{3}+9\sqrt{2}\right)\times 3\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\left(9\sqrt{3}+27\sqrt{2}\right)\sqrt{3}}{3}
Use the distributive property to multiply 3\sqrt{3}+9\sqrt{2} by 3.
\frac{9\left(\sqrt{3}\right)^{2}+27\sqrt{2}\sqrt{3}}{3}
Use the distributive property to multiply 9\sqrt{3}+27\sqrt{2} by \sqrt{3}.
\frac{9\times 3+27\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{27+27\sqrt{2}\sqrt{3}}{3}
Multiply 9 and 3 to get 27.
\frac{27+27\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}