Solve for x (complex solution)
x=\frac{-\sqrt{47}i+7}{2}\approx 3.5-3.4278273i
x=\frac{7+\sqrt{47}i}{2}\approx 3.5+3.4278273i
Graph
Share
Copied to clipboard
6-x^{2}+7x=30
Multiply x and x to get x^{2}.
6-x^{2}+7x-30=0
Subtract 30 from both sides.
-24-x^{2}+7x=0
Subtract 30 from 6 to get -24.
-x^{2}+7x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 7 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
Square 7.
x=\frac{-7±\sqrt{49+4\left(-24\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-7±\sqrt{49-96}}{2\left(-1\right)}
Multiply 4 times -24.
x=\frac{-7±\sqrt{-47}}{2\left(-1\right)}
Add 49 to -96.
x=\frac{-7±\sqrt{47}i}{2\left(-1\right)}
Take the square root of -47.
x=\frac{-7±\sqrt{47}i}{-2}
Multiply 2 times -1.
x=\frac{-7+\sqrt{47}i}{-2}
Now solve the equation x=\frac{-7±\sqrt{47}i}{-2} when ± is plus. Add -7 to i\sqrt{47}.
x=\frac{-\sqrt{47}i+7}{2}
Divide -7+i\sqrt{47} by -2.
x=\frac{-\sqrt{47}i-7}{-2}
Now solve the equation x=\frac{-7±\sqrt{47}i}{-2} when ± is minus. Subtract i\sqrt{47} from -7.
x=\frac{7+\sqrt{47}i}{2}
Divide -7-i\sqrt{47} by -2.
x=\frac{-\sqrt{47}i+7}{2} x=\frac{7+\sqrt{47}i}{2}
The equation is now solved.
6-x^{2}+7x=30
Multiply x and x to get x^{2}.
-x^{2}+7x=30-6
Subtract 6 from both sides.
-x^{2}+7x=24
Subtract 6 from 30 to get 24.
\frac{-x^{2}+7x}{-1}=\frac{24}{-1}
Divide both sides by -1.
x^{2}+\frac{7}{-1}x=\frac{24}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-7x=\frac{24}{-1}
Divide 7 by -1.
x^{2}-7x=-24
Divide 24 by -1.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-24+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-24+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=-\frac{47}{4}
Add -24 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=-\frac{47}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{47}i}{2} x-\frac{7}{2}=-\frac{\sqrt{47}i}{2}
Simplify.
x=\frac{7+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i+7}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}