Evaluate
\frac{253}{5}=50.6
Factor
\frac{11 \cdot 23}{5} = 50\frac{3}{5} = 50.6
Share
Copied to clipboard
\left(6+\frac{45+3}{15}\right)\left(15-\frac{7\times 4+3}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Multiply 3 and 15 to get 45.
\left(6+\frac{48}{15}\right)\left(15-\frac{7\times 4+3}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Add 45 and 3 to get 48.
\left(6+\frac{16}{5}\right)\left(15-\frac{7\times 4+3}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Reduce the fraction \frac{48}{15} to lowest terms by extracting and canceling out 3.
\left(\frac{30}{5}+\frac{16}{5}\right)\left(15-\frac{7\times 4+3}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Convert 6 to fraction \frac{30}{5}.
\frac{30+16}{5}\left(15-\frac{7\times 4+3}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Since \frac{30}{5} and \frac{16}{5} have the same denominator, add them by adding their numerators.
\frac{46}{5}\left(15-\frac{7\times 4+3}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Add 30 and 16 to get 46.
\frac{46}{5}\left(15-\frac{28+3}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Multiply 7 and 4 to get 28.
\frac{46}{5}\left(15-\frac{31}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Add 28 and 3 to get 31.
\frac{46}{5}\left(\frac{60}{4}-\frac{31}{4}\right)-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Convert 15 to fraction \frac{60}{4}.
\frac{46}{5}\times \frac{60-31}{4}-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Since \frac{60}{4} and \frac{31}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{46}{5}\times \frac{29}{4}-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Subtract 31 from 60 to get 29.
\frac{46\times 29}{5\times 4}-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Multiply \frac{46}{5} times \frac{29}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1334}{20}-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Do the multiplications in the fraction \frac{46\times 29}{5\times 4}.
\frac{667}{10}-\left(2+\frac{1\times 15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Reduce the fraction \frac{1334}{20} to lowest terms by extracting and canceling out 2.
\frac{667}{10}-\left(2+\frac{15+1}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Multiply 1 and 15 to get 15.
\frac{667}{10}-\left(2+\frac{16}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Add 15 and 1 to get 16.
\frac{667}{10}-\left(\frac{30}{15}+\frac{16}{15}\right)\left(13-\frac{7\times 4+3}{4}\right)
Convert 2 to fraction \frac{30}{15}.
\frac{667}{10}-\frac{30+16}{15}\left(13-\frac{7\times 4+3}{4}\right)
Since \frac{30}{15} and \frac{16}{15} have the same denominator, add them by adding their numerators.
\frac{667}{10}-\frac{46}{15}\left(13-\frac{7\times 4+3}{4}\right)
Add 30 and 16 to get 46.
\frac{667}{10}-\frac{46}{15}\left(13-\frac{28+3}{4}\right)
Multiply 7 and 4 to get 28.
\frac{667}{10}-\frac{46}{15}\left(13-\frac{31}{4}\right)
Add 28 and 3 to get 31.
\frac{667}{10}-\frac{46}{15}\left(\frac{52}{4}-\frac{31}{4}\right)
Convert 13 to fraction \frac{52}{4}.
\frac{667}{10}-\frac{46}{15}\times \frac{52-31}{4}
Since \frac{52}{4} and \frac{31}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{667}{10}-\frac{46}{15}\times \frac{21}{4}
Subtract 31 from 52 to get 21.
\frac{667}{10}-\frac{46\times 21}{15\times 4}
Multiply \frac{46}{15} times \frac{21}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{667}{10}-\frac{966}{60}
Do the multiplications in the fraction \frac{46\times 21}{15\times 4}.
\frac{667}{10}-\frac{161}{10}
Reduce the fraction \frac{966}{60} to lowest terms by extracting and canceling out 6.
\frac{667-161}{10}
Since \frac{667}{10} and \frac{161}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{506}{10}
Subtract 161 from 667 to get 506.
\frac{253}{5}
Reduce the fraction \frac{506}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}