Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-14x-12=12
Use the distributive property to multiply 5x+3 by 2x-4 and combine like terms.
10x^{2}-14x-12-12=0
Subtract 12 from both sides.
10x^{2}-14x-24=0
Subtract 12 from -12 to get -24.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 10\left(-24\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -14 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 10\left(-24\right)}}{2\times 10}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-40\left(-24\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-14\right)±\sqrt{196+960}}{2\times 10}
Multiply -40 times -24.
x=\frac{-\left(-14\right)±\sqrt{1156}}{2\times 10}
Add 196 to 960.
x=\frac{-\left(-14\right)±34}{2\times 10}
Take the square root of 1156.
x=\frac{14±34}{2\times 10}
The opposite of -14 is 14.
x=\frac{14±34}{20}
Multiply 2 times 10.
x=\frac{48}{20}
Now solve the equation x=\frac{14±34}{20} when ± is plus. Add 14 to 34.
x=\frac{12}{5}
Reduce the fraction \frac{48}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{20}{20}
Now solve the equation x=\frac{14±34}{20} when ± is minus. Subtract 34 from 14.
x=-1
Divide -20 by 20.
x=\frac{12}{5} x=-1
The equation is now solved.
10x^{2}-14x-12=12
Use the distributive property to multiply 5x+3 by 2x-4 and combine like terms.
10x^{2}-14x=12+12
Add 12 to both sides.
10x^{2}-14x=24
Add 12 and 12 to get 24.
\frac{10x^{2}-14x}{10}=\frac{24}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{14}{10}\right)x=\frac{24}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{7}{5}x=\frac{24}{10}
Reduce the fraction \frac{-14}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{5}x=\frac{12}{5}
Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{12}{5}+\left(-\frac{7}{10}\right)^{2}
Divide -\frac{7}{5}, the coefficient of the x term, by 2 to get -\frac{7}{10}. Then add the square of -\frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{12}{5}+\frac{49}{100}
Square -\frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{289}{100}
Add \frac{12}{5} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{10}\right)^{2}=\frac{289}{100}
Factor x^{2}-\frac{7}{5}x+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{289}{100}}
Take the square root of both sides of the equation.
x-\frac{7}{10}=\frac{17}{10} x-\frac{7}{10}=-\frac{17}{10}
Simplify.
x=\frac{12}{5} x=-1
Add \frac{7}{10} to both sides of the equation.