Solve for x
x = \frac{116320}{40367} = 2\frac{35586}{40367} \approx 2.881561672
Graph
Share
Copied to clipboard
\left(50-5.7x\right)\times \frac{10}{131}=\frac{5.7x-22}{17.5}+x
Expand \frac{1}{13.1} by multiplying both numerator and the denominator by 10.
50\times \frac{10}{131}-5.7x\times \frac{10}{131}=\frac{5.7x-22}{17.5}+x
Use the distributive property to multiply 50-5.7x by \frac{10}{131}.
\frac{50\times 10}{131}-5.7x\times \frac{10}{131}=\frac{5.7x-22}{17.5}+x
Express 50\times \frac{10}{131} as a single fraction.
\frac{500}{131}-5.7x\times \frac{10}{131}=\frac{5.7x-22}{17.5}+x
Multiply 50 and 10 to get 500.
\frac{500}{131}-\frac{57}{10}x\times \frac{10}{131}=\frac{5.7x-22}{17.5}+x
Convert decimal number -5.7 to fraction -\frac{57}{10}.
\frac{500}{131}+\frac{-57\times 10}{10\times 131}x=\frac{5.7x-22}{17.5}+x
Multiply -\frac{57}{10} times \frac{10}{131} by multiplying numerator times numerator and denominator times denominator.
\frac{500}{131}+\frac{-57}{131}x=\frac{5.7x-22}{17.5}+x
Cancel out 10 in both numerator and denominator.
\frac{500}{131}-\frac{57}{131}x=\frac{5.7x-22}{17.5}+x
Fraction \frac{-57}{131} can be rewritten as -\frac{57}{131} by extracting the negative sign.
\frac{500}{131}-\frac{57}{131}x=\frac{5.7x}{17.5}+\frac{-22}{17.5}+x
Divide each term of 5.7x-22 by 17.5 to get \frac{5.7x}{17.5}+\frac{-22}{17.5}.
\frac{500}{131}-\frac{57}{131}x=\frac{57}{175}x+\frac{-22}{17.5}+x
Divide 5.7x by 17.5 to get \frac{57}{175}x.
\frac{500}{131}-\frac{57}{131}x=\frac{57}{175}x+\frac{-220}{175}+x
Expand \frac{-22}{17.5} by multiplying both numerator and the denominator by 10.
\frac{500}{131}-\frac{57}{131}x=\frac{57}{175}x-\frac{44}{35}+x
Reduce the fraction \frac{-220}{175} to lowest terms by extracting and canceling out 5.
\frac{500}{131}-\frac{57}{131}x=\frac{232}{175}x-\frac{44}{35}
Combine \frac{57}{175}x and x to get \frac{232}{175}x.
\frac{500}{131}-\frac{57}{131}x-\frac{232}{175}x=-\frac{44}{35}
Subtract \frac{232}{175}x from both sides.
\frac{500}{131}-\frac{40367}{22925}x=-\frac{44}{35}
Combine -\frac{57}{131}x and -\frac{232}{175}x to get -\frac{40367}{22925}x.
-\frac{40367}{22925}x=-\frac{44}{35}-\frac{500}{131}
Subtract \frac{500}{131} from both sides.
-\frac{40367}{22925}x=-\frac{5764}{4585}-\frac{17500}{4585}
Least common multiple of 35 and 131 is 4585. Convert -\frac{44}{35} and \frac{500}{131} to fractions with denominator 4585.
-\frac{40367}{22925}x=\frac{-5764-17500}{4585}
Since -\frac{5764}{4585} and \frac{17500}{4585} have the same denominator, subtract them by subtracting their numerators.
-\frac{40367}{22925}x=-\frac{23264}{4585}
Subtract 17500 from -5764 to get -23264.
x=-\frac{23264}{4585}\left(-\frac{22925}{40367}\right)
Multiply both sides by -\frac{22925}{40367}, the reciprocal of -\frac{40367}{22925}.
x=\frac{-23264\left(-22925\right)}{4585\times 40367}
Multiply -\frac{23264}{4585} times -\frac{22925}{40367} by multiplying numerator times numerator and denominator times denominator.
x=\frac{533327200}{185082695}
Do the multiplications in the fraction \frac{-23264\left(-22925\right)}{4585\times 40367}.
x=\frac{116320}{40367}
Reduce the fraction \frac{533327200}{185082695} to lowest terms by extracting and canceling out 4585.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}