Solve for x
x=\frac{1}{5}=0.2
x=\frac{3}{5}=0.6
Graph
Share
Copied to clipboard
\left(50+50\left(-\frac{1}{3}\right)x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Use the distributive property to multiply 50 by 1-\frac{1}{3}x.
\left(50+\frac{50\left(-1\right)}{3}x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Express 50\left(-\frac{1}{3}\right) as a single fraction.
\left(50+\frac{-50}{3}x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Multiply 50 and -1 to get -50.
\left(50-\frac{50}{3}x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Fraction \frac{-50}{3} can be rewritten as -\frac{50}{3} by extracting the negative sign.
\left(20-\frac{50}{3}x\right)\times 10\left(1+\frac{5}{2}x\right)=250
Subtract 30 from 50 to get 20.
\left(200-\frac{50}{3}x\times 10\right)\left(1+\frac{5}{2}x\right)=250
Use the distributive property to multiply 20-\frac{50}{3}x by 10.
\left(200+\frac{-50\times 10}{3}x\right)\left(1+\frac{5}{2}x\right)=250
Express -\frac{50}{3}\times 10 as a single fraction.
\left(200+\frac{-500}{3}x\right)\left(1+\frac{5}{2}x\right)=250
Multiply -50 and 10 to get -500.
\left(200-\frac{500}{3}x\right)\left(1+\frac{5}{2}x\right)=250
Fraction \frac{-500}{3} can be rewritten as -\frac{500}{3} by extracting the negative sign.
200+200\times \frac{5}{2}x-\frac{500}{3}x-\frac{500}{3}x\times \frac{5}{2}x=250
Apply the distributive property by multiplying each term of 200-\frac{500}{3}x by each term of 1+\frac{5}{2}x.
200+200\times \frac{5}{2}x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Multiply x and x to get x^{2}.
200+\frac{200\times 5}{2}x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Express 200\times \frac{5}{2} as a single fraction.
200+\frac{1000}{2}x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Multiply 200 and 5 to get 1000.
200+500x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Divide 1000 by 2 to get 500.
200+\frac{1000}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Combine 500x and -\frac{500}{3}x to get \frac{1000}{3}x.
200+\frac{1000}{3}x+\frac{-500\times 5}{3\times 2}x^{2}=250
Multiply -\frac{500}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
200+\frac{1000}{3}x+\frac{-2500}{6}x^{2}=250
Do the multiplications in the fraction \frac{-500\times 5}{3\times 2}.
200+\frac{1000}{3}x-\frac{1250}{3}x^{2}=250
Reduce the fraction \frac{-2500}{6} to lowest terms by extracting and canceling out 2.
200+\frac{1000}{3}x-\frac{1250}{3}x^{2}-250=0
Subtract 250 from both sides.
-50+\frac{1000}{3}x-\frac{1250}{3}x^{2}=0
Subtract 250 from 200 to get -50.
-\frac{1250}{3}x^{2}+\frac{1000}{3}x-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1000}{3}±\sqrt{\left(\frac{1000}{3}\right)^{2}-4\left(-\frac{1250}{3}\right)\left(-50\right)}}{2\left(-\frac{1250}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1250}{3} for a, \frac{1000}{3} for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1000}{3}±\sqrt{\frac{1000000}{9}-4\left(-\frac{1250}{3}\right)\left(-50\right)}}{2\left(-\frac{1250}{3}\right)}
Square \frac{1000}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1000}{3}±\sqrt{\frac{1000000}{9}+\frac{5000}{3}\left(-50\right)}}{2\left(-\frac{1250}{3}\right)}
Multiply -4 times -\frac{1250}{3}.
x=\frac{-\frac{1000}{3}±\sqrt{\frac{1000000}{9}-\frac{250000}{3}}}{2\left(-\frac{1250}{3}\right)}
Multiply \frac{5000}{3} times -50.
x=\frac{-\frac{1000}{3}±\sqrt{\frac{250000}{9}}}{2\left(-\frac{1250}{3}\right)}
Add \frac{1000000}{9} to -\frac{250000}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1000}{3}±\frac{500}{3}}{2\left(-\frac{1250}{3}\right)}
Take the square root of \frac{250000}{9}.
x=\frac{-\frac{1000}{3}±\frac{500}{3}}{-\frac{2500}{3}}
Multiply 2 times -\frac{1250}{3}.
x=-\frac{\frac{500}{3}}{-\frac{2500}{3}}
Now solve the equation x=\frac{-\frac{1000}{3}±\frac{500}{3}}{-\frac{2500}{3}} when ± is plus. Add -\frac{1000}{3} to \frac{500}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{5}
Divide -\frac{500}{3} by -\frac{2500}{3} by multiplying -\frac{500}{3} by the reciprocal of -\frac{2500}{3}.
x=-\frac{500}{-\frac{2500}{3}}
Now solve the equation x=\frac{-\frac{1000}{3}±\frac{500}{3}}{-\frac{2500}{3}} when ± is minus. Subtract \frac{500}{3} from -\frac{1000}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{5}
Divide -500 by -\frac{2500}{3} by multiplying -500 by the reciprocal of -\frac{2500}{3}.
x=\frac{1}{5} x=\frac{3}{5}
The equation is now solved.
\left(50+50\left(-\frac{1}{3}\right)x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Use the distributive property to multiply 50 by 1-\frac{1}{3}x.
\left(50+\frac{50\left(-1\right)}{3}x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Express 50\left(-\frac{1}{3}\right) as a single fraction.
\left(50+\frac{-50}{3}x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Multiply 50 and -1 to get -50.
\left(50-\frac{50}{3}x-30\right)\times 10\left(1+\frac{5}{2}x\right)=250
Fraction \frac{-50}{3} can be rewritten as -\frac{50}{3} by extracting the negative sign.
\left(20-\frac{50}{3}x\right)\times 10\left(1+\frac{5}{2}x\right)=250
Subtract 30 from 50 to get 20.
\left(200-\frac{50}{3}x\times 10\right)\left(1+\frac{5}{2}x\right)=250
Use the distributive property to multiply 20-\frac{50}{3}x by 10.
\left(200+\frac{-50\times 10}{3}x\right)\left(1+\frac{5}{2}x\right)=250
Express -\frac{50}{3}\times 10 as a single fraction.
\left(200+\frac{-500}{3}x\right)\left(1+\frac{5}{2}x\right)=250
Multiply -50 and 10 to get -500.
\left(200-\frac{500}{3}x\right)\left(1+\frac{5}{2}x\right)=250
Fraction \frac{-500}{3} can be rewritten as -\frac{500}{3} by extracting the negative sign.
200+200\times \frac{5}{2}x-\frac{500}{3}x-\frac{500}{3}x\times \frac{5}{2}x=250
Apply the distributive property by multiplying each term of 200-\frac{500}{3}x by each term of 1+\frac{5}{2}x.
200+200\times \frac{5}{2}x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Multiply x and x to get x^{2}.
200+\frac{200\times 5}{2}x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Express 200\times \frac{5}{2} as a single fraction.
200+\frac{1000}{2}x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Multiply 200 and 5 to get 1000.
200+500x-\frac{500}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Divide 1000 by 2 to get 500.
200+\frac{1000}{3}x-\frac{500}{3}x^{2}\times \frac{5}{2}=250
Combine 500x and -\frac{500}{3}x to get \frac{1000}{3}x.
200+\frac{1000}{3}x+\frac{-500\times 5}{3\times 2}x^{2}=250
Multiply -\frac{500}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
200+\frac{1000}{3}x+\frac{-2500}{6}x^{2}=250
Do the multiplications in the fraction \frac{-500\times 5}{3\times 2}.
200+\frac{1000}{3}x-\frac{1250}{3}x^{2}=250
Reduce the fraction \frac{-2500}{6} to lowest terms by extracting and canceling out 2.
\frac{1000}{3}x-\frac{1250}{3}x^{2}=250-200
Subtract 200 from both sides.
\frac{1000}{3}x-\frac{1250}{3}x^{2}=50
Subtract 200 from 250 to get 50.
-\frac{1250}{3}x^{2}+\frac{1000}{3}x=50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1250}{3}x^{2}+\frac{1000}{3}x}{-\frac{1250}{3}}=\frac{50}{-\frac{1250}{3}}
Divide both sides of the equation by -\frac{1250}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{1000}{3}}{-\frac{1250}{3}}x=\frac{50}{-\frac{1250}{3}}
Dividing by -\frac{1250}{3} undoes the multiplication by -\frac{1250}{3}.
x^{2}-\frac{4}{5}x=\frac{50}{-\frac{1250}{3}}
Divide \frac{1000}{3} by -\frac{1250}{3} by multiplying \frac{1000}{3} by the reciprocal of -\frac{1250}{3}.
x^{2}-\frac{4}{5}x=-\frac{3}{25}
Divide 50 by -\frac{1250}{3} by multiplying 50 by the reciprocal of -\frac{1250}{3}.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=-\frac{3}{25}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{-3+4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{1}{25}
Add -\frac{3}{25} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{5}\right)^{2}=\frac{1}{25}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{1}{25}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{1}{5} x-\frac{2}{5}=-\frac{1}{5}
Simplify.
x=\frac{3}{5} x=\frac{1}{5}
Add \frac{2}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}