Evaluate
\frac{131-75\sqrt{3}}{2}\approx 0.548094716
Factor
\frac{131 - 75 \sqrt{3}}{2} = 0.5480947161670997
Share
Copied to clipboard
\left(5-3\sqrt{3}\right)\left(\frac{5\times 2}{2}-\frac{9\sqrt{3}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{2}{2}.
\left(5-3\sqrt{3}\right)\times \frac{5\times 2-9\sqrt{3}}{2}
Since \frac{5\times 2}{2} and \frac{9\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
\left(5-3\sqrt{3}\right)\times \frac{10-9\sqrt{3}}{2}
Do the multiplications in 5\times 2-9\sqrt{3}.
\frac{\left(5-3\sqrt{3}\right)\left(10-9\sqrt{3}\right)}{2}
Express \left(5-3\sqrt{3}\right)\times \frac{10-9\sqrt{3}}{2} as a single fraction.
\frac{50-45\sqrt{3}-30\sqrt{3}+27\left(\sqrt{3}\right)^{2}}{2}
Apply the distributive property by multiplying each term of 5-3\sqrt{3} by each term of 10-9\sqrt{3}.
\frac{50-75\sqrt{3}+27\left(\sqrt{3}\right)^{2}}{2}
Combine -45\sqrt{3} and -30\sqrt{3} to get -75\sqrt{3}.
\frac{50-75\sqrt{3}+27\times 3}{2}
The square of \sqrt{3} is 3.
\frac{50-75\sqrt{3}+81}{2}
Multiply 27 and 3 to get 81.
\frac{131-75\sqrt{3}}{2}
Add 50 and 81 to get 131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}