Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(5-3\sqrt{3}\right)\left(\frac{5\times 2}{2}-\frac{9\sqrt{3}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{2}{2}.
\left(5-3\sqrt{3}\right)\times \frac{5\times 2-9\sqrt{3}}{2}
Since \frac{5\times 2}{2} and \frac{9\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
\left(5-3\sqrt{3}\right)\times \frac{10-9\sqrt{3}}{2}
Do the multiplications in 5\times 2-9\sqrt{3}.
\frac{\left(5-3\sqrt{3}\right)\left(10-9\sqrt{3}\right)}{2}
Express \left(5-3\sqrt{3}\right)\times \frac{10-9\sqrt{3}}{2} as a single fraction.
\frac{50-45\sqrt{3}-30\sqrt{3}+27\left(\sqrt{3}\right)^{2}}{2}
Apply the distributive property by multiplying each term of 5-3\sqrt{3} by each term of 10-9\sqrt{3}.
\frac{50-75\sqrt{3}+27\left(\sqrt{3}\right)^{2}}{2}
Combine -45\sqrt{3} and -30\sqrt{3} to get -75\sqrt{3}.
\frac{50-75\sqrt{3}+27\times 3}{2}
The square of \sqrt{3} is 3.
\frac{50-75\sqrt{3}+81}{2}
Multiply 27 and 3 to get 81.
\frac{131-75\sqrt{3}}{2}
Add 50 and 81 to get 131.