Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

800+60x-2x^{2}=200
Use the distributive property to multiply 40-x by 20+2x and combine like terms.
800+60x-2x^{2}-200=0
Subtract 200 from both sides.
600+60x-2x^{2}=0
Subtract 200 from 800 to get 600.
-2x^{2}+60x+600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\left(-2\right)\times 600}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 60 for b, and 600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-2\right)\times 600}}{2\left(-2\right)}
Square 60.
x=\frac{-60±\sqrt{3600+8\times 600}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-60±\sqrt{3600+4800}}{2\left(-2\right)}
Multiply 8 times 600.
x=\frac{-60±\sqrt{8400}}{2\left(-2\right)}
Add 3600 to 4800.
x=\frac{-60±20\sqrt{21}}{2\left(-2\right)}
Take the square root of 8400.
x=\frac{-60±20\sqrt{21}}{-4}
Multiply 2 times -2.
x=\frac{20\sqrt{21}-60}{-4}
Now solve the equation x=\frac{-60±20\sqrt{21}}{-4} when ± is plus. Add -60 to 20\sqrt{21}.
x=15-5\sqrt{21}
Divide -60+20\sqrt{21} by -4.
x=\frac{-20\sqrt{21}-60}{-4}
Now solve the equation x=\frac{-60±20\sqrt{21}}{-4} when ± is minus. Subtract 20\sqrt{21} from -60.
x=5\sqrt{21}+15
Divide -60-20\sqrt{21} by -4.
x=15-5\sqrt{21} x=5\sqrt{21}+15
The equation is now solved.
800+60x-2x^{2}=200
Use the distributive property to multiply 40-x by 20+2x and combine like terms.
60x-2x^{2}=200-800
Subtract 800 from both sides.
60x-2x^{2}=-600
Subtract 800 from 200 to get -600.
-2x^{2}+60x=-600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+60x}{-2}=-\frac{600}{-2}
Divide both sides by -2.
x^{2}+\frac{60}{-2}x=-\frac{600}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-30x=-\frac{600}{-2}
Divide 60 by -2.
x^{2}-30x=300
Divide -600 by -2.
x^{2}-30x+\left(-15\right)^{2}=300+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=300+225
Square -15.
x^{2}-30x+225=525
Add 300 to 225.
\left(x-15\right)^{2}=525
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{525}
Take the square root of both sides of the equation.
x-15=5\sqrt{21} x-15=-5\sqrt{21}
Simplify.
x=5\sqrt{21}+15 x=15-5\sqrt{21}
Add 15 to both sides of the equation.