Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1200-170x+6x^{2}=500
Use the distributive property to multiply 40-3x by 30-2x and combine like terms.
1200-170x+6x^{2}-500=0
Subtract 500 from both sides.
700-170x+6x^{2}=0
Subtract 500 from 1200 to get 700.
6x^{2}-170x+700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-170\right)±\sqrt{\left(-170\right)^{2}-4\times 6\times 700}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -170 for b, and 700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-170\right)±\sqrt{28900-4\times 6\times 700}}{2\times 6}
Square -170.
x=\frac{-\left(-170\right)±\sqrt{28900-24\times 700}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-170\right)±\sqrt{28900-16800}}{2\times 6}
Multiply -24 times 700.
x=\frac{-\left(-170\right)±\sqrt{12100}}{2\times 6}
Add 28900 to -16800.
x=\frac{-\left(-170\right)±110}{2\times 6}
Take the square root of 12100.
x=\frac{170±110}{2\times 6}
The opposite of -170 is 170.
x=\frac{170±110}{12}
Multiply 2 times 6.
x=\frac{280}{12}
Now solve the equation x=\frac{170±110}{12} when ± is plus. Add 170 to 110.
x=\frac{70}{3}
Reduce the fraction \frac{280}{12} to lowest terms by extracting and canceling out 4.
x=\frac{60}{12}
Now solve the equation x=\frac{170±110}{12} when ± is minus. Subtract 110 from 170.
x=5
Divide 60 by 12.
x=\frac{70}{3} x=5
The equation is now solved.
1200-170x+6x^{2}=500
Use the distributive property to multiply 40-3x by 30-2x and combine like terms.
-170x+6x^{2}=500-1200
Subtract 1200 from both sides.
-170x+6x^{2}=-700
Subtract 1200 from 500 to get -700.
6x^{2}-170x=-700
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-170x}{6}=-\frac{700}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{170}{6}\right)x=-\frac{700}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{85}{3}x=-\frac{700}{6}
Reduce the fraction \frac{-170}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{85}{3}x=-\frac{350}{3}
Reduce the fraction \frac{-700}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{85}{3}x+\left(-\frac{85}{6}\right)^{2}=-\frac{350}{3}+\left(-\frac{85}{6}\right)^{2}
Divide -\frac{85}{3}, the coefficient of the x term, by 2 to get -\frac{85}{6}. Then add the square of -\frac{85}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{85}{3}x+\frac{7225}{36}=-\frac{350}{3}+\frac{7225}{36}
Square -\frac{85}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{85}{3}x+\frac{7225}{36}=\frac{3025}{36}
Add -\frac{350}{3} to \frac{7225}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{85}{6}\right)^{2}=\frac{3025}{36}
Factor x^{2}-\frac{85}{3}x+\frac{7225}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{6}\right)^{2}}=\sqrt{\frac{3025}{36}}
Take the square root of both sides of the equation.
x-\frac{85}{6}=\frac{55}{6} x-\frac{85}{6}=-\frac{55}{6}
Simplify.
x=\frac{70}{3} x=5
Add \frac{85}{6} to both sides of the equation.