Solve for x
x = \frac{55}{2} = 27\frac{1}{2} = 27.5
x=5
Graph
Share
Copied to clipboard
1000-130x+4x^{2}=450
Use the distributive property to multiply 40-2x by 25-2x and combine like terms.
1000-130x+4x^{2}-450=0
Subtract 450 from both sides.
550-130x+4x^{2}=0
Subtract 450 from 1000 to get 550.
4x^{2}-130x+550=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-130\right)±\sqrt{\left(-130\right)^{2}-4\times 4\times 550}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -130 for b, and 550 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-130\right)±\sqrt{16900-4\times 4\times 550}}{2\times 4}
Square -130.
x=\frac{-\left(-130\right)±\sqrt{16900-16\times 550}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-130\right)±\sqrt{16900-8800}}{2\times 4}
Multiply -16 times 550.
x=\frac{-\left(-130\right)±\sqrt{8100}}{2\times 4}
Add 16900 to -8800.
x=\frac{-\left(-130\right)±90}{2\times 4}
Take the square root of 8100.
x=\frac{130±90}{2\times 4}
The opposite of -130 is 130.
x=\frac{130±90}{8}
Multiply 2 times 4.
x=\frac{220}{8}
Now solve the equation x=\frac{130±90}{8} when ± is plus. Add 130 to 90.
x=\frac{55}{2}
Reduce the fraction \frac{220}{8} to lowest terms by extracting and canceling out 4.
x=\frac{40}{8}
Now solve the equation x=\frac{130±90}{8} when ± is minus. Subtract 90 from 130.
x=5
Divide 40 by 8.
x=\frac{55}{2} x=5
The equation is now solved.
1000-130x+4x^{2}=450
Use the distributive property to multiply 40-2x by 25-2x and combine like terms.
-130x+4x^{2}=450-1000
Subtract 1000 from both sides.
-130x+4x^{2}=-550
Subtract 1000 from 450 to get -550.
4x^{2}-130x=-550
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-130x}{4}=-\frac{550}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{130}{4}\right)x=-\frac{550}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{65}{2}x=-\frac{550}{4}
Reduce the fraction \frac{-130}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{65}{2}x=-\frac{275}{2}
Reduce the fraction \frac{-550}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{65}{2}x+\left(-\frac{65}{4}\right)^{2}=-\frac{275}{2}+\left(-\frac{65}{4}\right)^{2}
Divide -\frac{65}{2}, the coefficient of the x term, by 2 to get -\frac{65}{4}. Then add the square of -\frac{65}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{65}{2}x+\frac{4225}{16}=-\frac{275}{2}+\frac{4225}{16}
Square -\frac{65}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{65}{2}x+\frac{4225}{16}=\frac{2025}{16}
Add -\frac{275}{2} to \frac{4225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{65}{4}\right)^{2}=\frac{2025}{16}
Factor x^{2}-\frac{65}{2}x+\frac{4225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{65}{4}\right)^{2}}=\sqrt{\frac{2025}{16}}
Take the square root of both sides of the equation.
x-\frac{65}{4}=\frac{45}{4} x-\frac{65}{4}=-\frac{45}{4}
Simplify.
x=\frac{55}{2} x=5
Add \frac{65}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}