Evaluate
72x^{4}+45x^{2}-22x+3
Differentiate w.r.t. x
288x^{3}+90x-22
Graph
Share
Copied to clipboard
3x^{2}\times 5\times 3+3x\times 2x\times 3x\times 2x\times 2-11x\times 2+3
Multiply x and x to get x^{2}.
3x^{2}\times 5\times 3+3x^{2}\times 2\times 3x\times 2x\times 2-11x\times 2+3
Multiply x and x to get x^{2}.
3x^{2}\times 5\times 3+3x^{3}\times 2\times 3\times 2x\times 2-11x\times 2+3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
3x^{2}\times 5\times 3+3x^{4}\times 2\times 3\times 2\times 2-11x\times 2+3
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
15x^{2}\times 3+3x^{4}\times 2\times 3\times 2\times 2-11x\times 2+3
Multiply 3 and 5 to get 15.
45x^{2}+3x^{4}\times 2\times 3\times 2\times 2-11x\times 2+3
Multiply 15 and 3 to get 45.
45x^{2}+6x^{4}\times 3\times 2\times 2-11x\times 2+3
Multiply 3 and 2 to get 6.
45x^{2}+18x^{4}\times 2\times 2-11x\times 2+3
Multiply 6 and 3 to get 18.
45x^{2}+36x^{4}\times 2-11x\times 2+3
Multiply 18 and 2 to get 36.
45x^{2}+72x^{4}-11x\times 2+3
Multiply 36 and 2 to get 72.
45x^{2}+72x^{4}-22x+3
Multiply 11 and 2 to get 22.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}\times 5\times 3+3x\times 2x\times 3x\times 2x\times 2-11x\times 2+3)
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}\times 5\times 3+3x^{2}\times 2\times 3x\times 2x\times 2-11x\times 2+3)
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}\times 5\times 3+3x^{3}\times 2\times 3\times 2x\times 2-11x\times 2+3)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}\times 5\times 3+3x^{4}\times 2\times 3\times 2\times 2-11x\times 2+3)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(15x^{2}\times 3+3x^{4}\times 2\times 3\times 2\times 2-11x\times 2+3)
Multiply 3 and 5 to get 15.
\frac{\mathrm{d}}{\mathrm{d}x}(45x^{2}+3x^{4}\times 2\times 3\times 2\times 2-11x\times 2+3)
Multiply 15 and 3 to get 45.
\frac{\mathrm{d}}{\mathrm{d}x}(45x^{2}+6x^{4}\times 3\times 2\times 2-11x\times 2+3)
Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(45x^{2}+18x^{4}\times 2\times 2-11x\times 2+3)
Multiply 6 and 3 to get 18.
\frac{\mathrm{d}}{\mathrm{d}x}(45x^{2}+36x^{4}\times 2-11x\times 2+3)
Multiply 18 and 2 to get 36.
\frac{\mathrm{d}}{\mathrm{d}x}(45x^{2}+72x^{4}-11x\times 2+3)
Multiply 36 and 2 to get 72.
\frac{\mathrm{d}}{\mathrm{d}x}(45x^{2}+72x^{4}-22x+3)
Multiply 11 and 2 to get 22.
2\times 45x^{2-1}+4\times 72x^{4-1}-22x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
90x^{2-1}+4\times 72x^{4-1}-22x^{1-1}
Multiply 2 times 45.
90x^{1}+4\times 72x^{4-1}-22x^{1-1}
Subtract 1 from 2.
90x^{1}+288x^{4-1}-22x^{1-1}
Multiply 4 times 72.
90x^{1}+288x^{3}-22x^{1-1}
Subtract 1 from 4.
90x^{1}+288x^{3}-22x^{0}
Subtract 1 from 1.
90x+288x^{3}-22x^{0}
For any term t, t^{1}=t.
90x+288x^{3}-22
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}