Solve for x
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Share
Copied to clipboard
3x+7-\left(5x-8\right)=0
Multiply 4 and 2 to get 8.
3x+7-5x-\left(-8\right)=0
To find the opposite of 5x-8, find the opposite of each term.
3x+7-5x+8=0
The opposite of -8 is 8.
-2x+7+8=0
Combine 3x and -5x to get -2x.
-2x+15=0
Add 7 and 8 to get 15.
-2x=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-15}{-2}
Divide both sides by -2.
x=\frac{15}{2}
Fraction \frac{-15}{-2} can be simplified to \frac{15}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}